17,695 research outputs found

    Noise Power Spectrum Scene-Dependency in Simulated Image Capture Systems

    Get PDF
    The Noise Power Spectrum (NPS) is a standard measure for image capture system noise. It is derived traditionally from captured uniform luminance patches that are unrepresentative of pictorial scene signals. Many contemporary capture systems apply non- linear content-aware signal processing, which renders their noise scene-dependent. For scene-dependent systems, measuring the NPS with respect to uniform patch signals fails to characterize with accuracy: i) system noise concerning a given input scene, ii) the average system noise power in real-world applications. The scene- and-process-dependent NPS (SPD-NPS) framework addresses these limitations by measuring temporally varying system noise with respect to any given input signal. In this paper, we examine the scene-dependency of simulated camera pipelines in-depth by deriving SPD-NPSs from fifty test scenes. The pipelines apply either linear or non-linear denoising and sharpening, tuned to optimize output image quality at various opacity levels and exposures. Further, we present the integrated area under the mean of SPD-NPS curves over a representative scene set as an objective system noise metric, and their relative standard deviation area (RSDA) as a metric for system noise scene-dependency. We close by discussing how these metrics can also be computed using scene-and-process- dependent Modulation Transfer Functions (SPD-MTF)

    Black holes and Hawking radiation in spacetime and its analogues

    Full text link
    These notes introduce the fundamentals of black hole geometry, the thermality of the vacuum, and the Hawking effect, in spacetime and its analogues. Stimulated emission of Hawking radiation, the trans-Planckian question, short wavelength dispersion, and white hole radiation in the setting of analogue models are also discussed. No prior knowledge of differential geometry, general relativity, or quantum field theory in curved spacetime is assumed.Comment: 31 pages, 9 figures; to appear in the proceedings of the IX SIGRAV School on 'Analogue Gravity', Como (Italy), May 2011, eds. D. Faccio et. al. (Springer

    Data acquisition and reduction for the University of Virginia superconducting magnetic suspension and balance facility

    Get PDF
    The problems associated with data acquisition and reduction in the U. Va. superconducting magnetic suspension and balance facility are similar to those in free-flight ranges (or tunnels). The model undergoes a quasi-six-degree-of-freedom motion which must be monitored both in position and angular orientation from which the aerodynamics must be inferred. The data acquisition problem is made more difficult because geometric constraints prevent direct visual access to the model in the Mach 3 wind tunnel. The methods, accuracies, and problems associated with the acquisition of data are discussed

    Deployable antenna demonstration project

    Get PDF
    Test program options are described for large lightweight deployable antennas for space communications, radar and radiometry systems

    Observations of attenuation at 20.6, 31.65 and 90.0 GHz: Preliminary results from Wallops Island, VA

    Get PDF
    Ground based radiometric observations of atmospheric attenuation at 20.6, 31.65, and 90.0 GHz were made at Wallops Island, Virginia during April and May 1989. Early results from the analysis of the data set are compared with previous observations from California and Colorado. The relative attenuation ratios observed at each frequency during clear, cloudy, and rainy conditions are shown. Plans for complete analysis of the data are described

    Hawking radiation without black hole entropy

    Get PDF
    In this Letter I point out that Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries. Hawking radiation arises for any test field on any Lorentzian geometry containing an event horizon regardless of whether or not the Lorentzian geometry satisfies the dynamical Einstein equations of general relativity. On the other hand, the classical laws of black hole mechanics are intrinsically linked to the Einstein equations of general relativity (or their perturbative extension into either semiclassical quantum gravity or string-inspired scenarios). In particular, the laws of black hole thermodynamics, and the identification of the entropy of a black hole with its area, are inextricably linked with the dynamical equations satisfied by the Lorentzian geometry: entropy is proportional to area (plus corrections) if and only if the dynamical equations are the Einstein equations (plus corrections). It is quite possible to have Hawking radiation occur in physical situations in which the laws of black hole mechanics do not apply, and in situations in which the notion of black hole entropy does not even make any sense. This observation has important implications for any derivation of black hole entropy that seeks to deduce black hole entropy from the Hawking radiation.Comment: Uses ReV_TeX 3.0; Five pages in two-column forma
    corecore