10,805 research outputs found

    Lattice Black Holes

    Get PDF
    We study the Hawking process on lattices falling into static black holes. The motivation is to understand how the outgoing modes and Hawking radiation can arise in a setting with a strict short distance cutoff in the free-fall frame. We employ two-dimensional free scalar field theory. For a falling lattice with a discrete time-translation symmetry we use analytical methods to establish that, for Killing frequency ω\omega and surface gravity κ\kappa satisfying κω1/31\kappa\ll\omega^{1/3}\ll 1 in lattice units, the continuum Hawking spectrum is recovered. The low frequency outgoing modes arise from exotic ingoing modes with large proper wavevectors that "refract" off the horizon. In this model with time translation symmetry the proper lattice spacing goes to zero at spatial infinity. We also consider instead falling lattices whose proper lattice spacing is constant at infinity and therefore grows with time at any finite radius. This violation of time translation symmetry is visible only at wavelengths comparable to the lattice spacing, and it is responsible for transmuting ingoing high Killing frequency modes into low frequency outgoing modes.Comment: 26 pages, LaTeX, 2 figures included with psfig. Several improvements in the presentation. One figure added. Final version to appear in Phys.Rev.

    General relativity and cosmology derived from principle of maximum power or force

    Get PDF
    The field equations of general relativity are shown to derive from the existence of a limit force or of a limit power in nature. The limits have the value of c^4/4G and c^5/4G. The proof makes use of a result by Jacobson. All known experimental data is consistent with the limits. Applied to the universe, the limits predict its darkness at night and the observed scale factor. Some experimental tests of the limits are proposed. The main counter-arguments and paradoxes are discussed, such as the transformation under boosts, the force felt at a black hole horizon, the mountain problem, and the contrast to scalar--tensor theories of gravitation. The resolution of the paradoxes also clarifies why the maximum force and the maximum power have remained hidden for so long. The derivation of the field equations shows that the maximum force or power plays the same role for general relativity as the maximum speed plays for special relativity.Comment: 24 pages, 1 figure, LaTeX, published versio
    corecore