236 research outputs found

    Renewable build-up pathways for the US: Generation costs are not system costs

    Get PDF
    The transition to a future electricity system based primarily on wind and solar PV is examined for all regions in the contiguous US. We present optimized pathways for the build-up of wind and solar power for least backup energy needs as well as for least cost obtained with a simplified, lightweight model based on long-term high resolution weather-determined generation data. In the absence of storage, the pathway which achieves the best match of generation and load, thus resulting in the least backup energy requirements, generally favors a combination of both technologies, with a wind/solar PV energy mix of about 80/20 in a fully renewable scenario. The least cost development is seen to start with 100% of the technology with the lowest average generation costs first, but with increasing renewable installations, economically unfavorable excess generation pushes it toward the minimal backup pathway. Surplus generation and the entailed costs can be reduced significantly by combining wind and solar power, and/or absorbing excess generation, for example with storage or transmission, or by coupling the electricity system to other energy sectors.Comment: 11 pages, 6 figure

    Importance of composition and hygroscopicity of BC particles to the effect of BC mitigation on cloud properties: Application to California conditions

    Get PDF
    Black carbon (BC) has many effects on climate including the direct effect on atmospheric absorption, indirect and semi-direct effects on clouds, snow effects, and others. While most of these are positive (warming), the first indirect effect is negative and quantifying its magnitude in addition to other BC feedbacks is important for supporting policies that mitigate BC. We use the detailed aerosol chemistry parcel model of Russell and Seinfeld (1998), observationally constrained by initial measured aerosol concentrations from five California sites, to provide simulated cloud drop number (CDN) concentrations against which two GCM calculations – one run at the global scale and one nested from the global-to-regional scale are compared. The GCM results reflect the combined effects of their emission inventories, advection schemes, and cloud parameterizations. BC-type particles contributed between 16 and 20% of cloud droplets at all sites even in the presence of more hygroscopic particles. While this chemically detailed parcel model result is based on simplified cloud dynamics and does not consider semi-direct or cloud absorption effects, the cloud drop number concentrations are similar to the simulations of both Chen et al. (2010b) and Jacobson (2010) for the average cloud conditions in California. Reducing BC particle concentration by 50% decreased the cloud droplet concentration by between 6% and 9% resulting in the formation of fewer, larger cloud droplets that correspond to a lower cloud albedo. This trend is similar to Chen et al. (2010b) and Jacobson (2010) when BC particles were modeled as hygroscopic. This reduction in CDN in California due to the decrease in activated BC particles supports the concern raised by Chen et al. (2010a) that the cloud albedo effect of BC particles has a cooling effect that partially offsets the direct forcing reduction if other warming effects of BC on clouds are unchanged. These results suggests that for regions like the California sites studied here, where BC mitigation targets fossil fuel sources, a critical aspect of the modeled reduction is the chemical composition and associated hygroscopicity of the BC particles removed as well as their relative contribution to the atmospheric particle concentrations

    Carbon emissions and costs associated with subsidizing New York nuclear instead of replacing it with renewables

    Get PDF
    A comparison of costs and CO2 emissions of New York's nuclear power and with renewable scenarios until 2050 is provided. Shutting nuclear down today and replacing it with onshore wind will save $7.9 billion until 2050. Renewable scenarios lead to CO2 savings up to 27.4 Mt until 2050. Reinvesting cost savings from renewable scenarios into additional wind capacities will increase CO2 savings up to 32.5 Mt

    The effect on photochemical smog of converting the U.S. fleet of gasoline vehicles to modern diesel vehicles

    Get PDF
    With the increased use of particle traps and nitrogen oxide (NO_x) control devices to reduce air pollution, “modern” diesel vehicles are being encouraged over gasoline vehicles globally as a central method of slowing global warming. Data to date, though, suggest that the NO_2:NO ratio from modern diesel may exceed that of gasoline, and it is difficult to reduce diesel NO_x below gasoline NO_x without increasing particle emissions. Here, it is calculated that, unless the diesel NO_2:NO ratio and total NO_x are reduced to those of gasoline, modern diesel, which should have lower hydrocarbon (HC) and carbon monoxide (CO) emissions than gasoline, may still enhance photochemical smog at the surface and aloft, on average, over the U.S. relative to gasoline. The reason is that vehicle-produced smog in the U.S. depends more on NO_x and the NO_2:NO ratio than on HCs or CO. It is also found that vehicle NO_x controls may be more effective than NO_2:NO ratio controls at reducing ozone

    Potential Environmental Impacts of Hydrogen-based Transportation and Power Systems

    Get PDF
    Hydrogen (H2) offers advantages as an energy carrier: minimal discharge of pollutants, production from multiple sources, increased thermodynamic efficiencies compared to fossil fuels, and reduced dependence on foreign oil. However, potential impacts from the H2 generation processes, transport and distribution of H2, and releases of H2 into the atmosphere have been proposed. The goal of this project was to analyze the effects of emissions of hydrogen, the six criteria pollutants and greenhouse gases on climate, human health, materials and structures. This project was part of a larger effort by DOE to assess the life-cycle costs and benefits and environmental impacts to inform decisions regarding future hydrogen research. Technical Approach: A modeling approach was developed and used to evaluate the potential environmental effects associated with the conversion of the on-road vehicle fleet from fossil-fuel vehicles to hydrogen fuel cell vehicles. GATOR-GCMOM was the primary tool used to predict atmospheric concentrations of gases and aerosols for selected scenarios. This model accounts for all feedbacks among major atmospheric processes based on first principles. The future scenarios and the emission rates selected for this analysis of hydrogen environmental effects are based on the scenarios developed by IPCC. The scenarios selected for the model simulations are a 2000 and 2050 A1B base cases, and a 2050 A1B case with hydrogen fuel cell vehicles (HFCVs). The hydrogen fuel cell scenario assumed conversion of 90% of fossil-fuel on-road vehicles (FFOV) in developed countries and 45% of FFOVs vehicles in other countries to HFCVs, with the H2 produced by steam-reforming of natural gas (SHFCVs). Simulations were conducted to examine the effect of converting the worldâÂÂs FFOVs to HFCVs, where the H2 is produced by wind-powered electrolysis (WHFCVs). In all scenarios a 3% leakage of H2 consumed was assumed. Two new models were developed that provide the ability to evaluate a wider range of conditions and address some of the uncertainties that exist in the evaluation of hydrogen emissions. A simplified global hydrogen cycle model that simulates hydrogen dynamics in the troposphere and stratosphere was developed. A Monte Carlo framework was developed to address hydrogen uptake variability for different types of ecosystems. Findings 1.Converting vehicles worldwide in 2050 to SHFCVs at 90% penetration in developed countries and 45% penetration in other countries is expected to reduce NOx, CO, CO2, CH4, some other organic gases, ozone, PAN, black carbon, and other particle components in the troposphere, but may increase some other organic gases, depending on emissions. Conversion to SHFCVs is also expected to cool the troposphere and warm the stratosphere, but to a lesser extent than WHFCVs. Finally, SHFCVs are expected to increase UTLS ozone while decreasing upper stratospheric ozone, but to a lesser extent than WHFCVs. 2.The predicted criteria pollutant concentrations from the GATOR-GCMOM simulations indicated that near-surface annual mean concentrations in the US are likely to increase from the 2000 base case to the 2050 A1B base case for CO2 and ozone due to the increased economic activity, but to decrease for CO, NO2, SO2, and PM10 due to improved pollution control equipment and energy efficiencies. The shift to SHFCVs in 2050 was predicted to result in decreased concentrations for all the criteria pollutants, except for SO2 and PM10. The higher predicted concentrations for SO2 and PM10 were attributed to increased emissions using the steam-reforming method to generate H2. If renewable methods such as wind-based electrolysis were used to generate H2, the emissions of SO2 and PM10 would be lower. 3.The effects on air quality, human health, ecosystem, and building structures were quantified by comparing the GATOR-GCMOM model output and accepted health and ecosystem effects levels and ambient air quality criteria. Shifting to HFCVs is expected to result in improved air quality and benefits to human health. Shifting to HFCVs is unlikely to result in damage to buildings. 4.Results are thought to be robust for larger leakage rates of H2 and for greater penetrations of HFCVs, since the controlling factor for stratospheric ozone impacts is the reduction in fossil-fuel greenhouse gases and the resulting surface cooling, which reduces water vapor emissions and stratospheric warming, which increases tropopause stability reducing water vapor transport to the stratosphere. 5.The supplemental modeling results were generally supportive of the results from the GATOR-GCMOM simulations, and recommendations for additional analyses were made. Extending the duration of the simulation to coincide with the time required for hydrogen mixing ratios to attain a steady state condition was recommended. Further evaluation of algorithms to describe hydrogen uptake in the model was also recommended

    Four problems with global carbon markets: a critical review

    Get PDF
    This article offers a critique of global carbon markets and trading, with a special focus on the Clean Development Mechanism of the Kyoto Protocol. It explores problems with the use of tradable permits to address climate change revolving around four areas: homogeneity, justice, gaming, and information. Homogeneity problems arise from the non-linear nature of climate change and sensitivity of emissions, which complicate attempts to calculate carbon offsets. Justice problems involve issues of dependency and the concentration of wealth among the rich, meaning carbon trading often counteracts attempts to reduce poverty. Gaming problems include pressures to promote high-volume, least-cost projects and the consequences of emissions leakage. Information problems encompass transaction costs related to carbon trading and market participation and the comparatively weak institutional capacity of project evaluators

    How much wind power potential does Europe have? Examining European wind power potential with an enhanced socio-technical atlas

    Get PDF
    The continuous development of onshore wind farms is an important feature of the European transition towards an energy system powered by distributed renewables and low-carbon resources. This study assesses and simulates potential for future onshore wind turbine installations throughout Europe. The study depicts, via maps, all the national and regional socio-technical restrictions and regulations for wind project development using spatial analysis conducted through GIS. The inputs for the analyses were based on an original dataset compiled from satellites and public databases relating to electricity, planning, and other dimensions. Taking into consideration socio-technical constraints, the study reveals 52.5 TW of untapped onshore wind power potential in Europe - equivalent to 1 MW per 16 European citizens – a supply that would be sufficient to cover the global energy demand from now through to 2050. The study offers a more rigorous, multi-dimensional, and granular atlas of onshore wind energy development that can assist with future energy policy, research, and planning

    Adaptive optics with an infrared pyramid wavefront sensor at Keck

    Get PDF
    The study of cold or obscured, red astrophysical sources can significantly benefit from adaptive optics (AO) systems employing infrared (IR) wavefront sensors. One particular area is the study of exoplanets around M-dwarf stars and planet formation within protoplanetary disks in star-forming regions. Such objects are faint at visible wavelengths but bright enough in the IR to be used as a natural guide star for the AO system. Doing the wavefront sensing at IR wavelengths enables high-resolution AO correction for such science cases, with the potential to reach the contrasts required for direct imaging of exoplanets. To this end, a new near-infrared pyramid wavefront sensor (PyWFS) has been added to the Keck II AO system, extending the performance of the facility AO system for the study of faint red objects. We present the Keck II PyWFS, which represents a number of firsts, including the first PyWFS installed on a segmented telescope and the first use of an IR PyWFS on a 10-m class telescope. We discuss the scientific and technological advantages offered by IR wavefront sensing and present the design and commissioning of the Keck PyWFS. In particular, we report on the performance of the Selex Avalanche Photodiode for HgCdTe InfraRed Array detector used for the PyWFS and highlight the novelty of this wavefront sensor in terms of the performance for faint red objects and the improvement in contrast. The system has been commissioned for science with the vortex coronagraph in the NIRC2 IR science instrument and is being commissioned alongside a new fiber injection unit for NIRSPEC. We present the first science verification of the system—to facilitate the study of exoplanets around M-type stars
    corecore