14,507 research outputs found
General considerations of matter coupling with the self-dual connection
It has been shown for low-spin fields that the use of only the self-dual part
of the connection as basic variable does not lead to extra conditions or
inconsistencies. We study whether this is true for more general chiral action.
We generalize the chiral gravitational action, and assume that half-integer
spin fields are coupled with torsion linearly. The equation for torsion is
solved and substituted back into the generalized chiral action, giving
four-fermion contact terms. If these contact terms are complex, the imaginary
part will give rise to extra conditions for the gravitational and matter field
equations. We study the four-fermion contact terms taking spin-1/2 and spin-3/2
fields as examples.Comment: 16 pages, late
A rapidly expanding Bose-Einstein condensate: an expanding universe in the lab
We study the dynamics of a supersonically expanding ring-shaped Bose-Einstein
condensate both experimentally and theoretically. The expansion redshifts
long-wavelength excitations, as in an expanding universe. After expansion,
energy in the radial mode leads to the production of bulk topological
excitations -- solitons and vortices -- driving the production of a large
number of azimuthal phonons and, at late times, causing stochastic persistent
currents. These complex nonlinear dynamics, fueled by the energy stored
coherently in one mode, are reminiscent of a type of "preheating" that may have
taken place at the end of inflation.Comment: 12 pages, 7 figure
Algebraic Approach to Interacting Quantum Systems
We present an algebraic framework for interacting extended quantum systems to
study complex phenomena characterized by the coexistence and competition of
different states of matter. We start by showing how to connect different
(spin-particle-gauge) {\it languages} by means of exact mappings (isomorphisms)
that we name {\it dictionaries} and prove a fundamental theorem establishing
when two arbitrary languages can be connected. These mappings serve to unravel
symmetries which are hidden in one representation but become manifest in
another. In addition, we establish a formal link between seemingly unrelated
physical phenomena by changing the language of our model description. This link
leads to the idea of {\it universality} or equivalence. Moreover, we introduce
the novel concept of {\it emergent symmetry} as another symmetry guiding
principle. By introducing the notion of {\it hierarchical languages}, we
determine the quantum phase diagram of lattice models (previously unsolved) and
unveil hidden order parameters to explore new states of matter. Hierarchical
languages also constitute an essential tool to provide a unified description of
phases which compete and coexist. Overall, our framework provides a simple and
systematic methodology to predict and discover new kinds of orders. Another
aspect exploited by the present formalism is the relation between condensed
matter and lattice gauge theories through quantum link models. We conclude
discussing applications of these dictionaries to the area of quantum
information and computation with emphasis in building new models of computation
and quantum programming languages.Comment: 44 pages, 14 psfigures. Advances in Physics 53, 1 (2004
Minimal Off-Shell Version of N = 1 Chiral Supergravity
We construct the minimal off-shell formulation of N = 1 chiral supergravity
(SUGRA) introducing a complex antisymmetric tensor field and a
complex axial-vector field as auxiliary fields. The resulting algebra
of the right- and left-handed supersymmetry (SUSY) transformations closes off
shell and generates chiral gauge transforamtions and vector gauge
transformations in addition to the transformations which appear in the case
without auxiliary fields.Comment: 9 pages, late
Small Orbits
We study both the "large" and "small" U-duality charge orbits of extremal
black holes appearing in D = 5 and D = 4 Maxwell-Einstein supergravity theories
with symmetric scalar manifolds. We exploit a formalism based on cubic Jordan
algebras and their associated Freudenthal triple systems, in order to derive
the minimal charge representatives, their stabilizers and the associated
"moduli spaces". After recalling N = 8 maximal supergravity, we consider N = 2
and N = 4 theories coupled to an arbitrary number of vector multiplets, as well
as N = 2 magic, STU, ST^2 and T^3 models. While the STU model may be considered
as part of the general N = 2 sequence, albeit with an additional triality
symmetry, the ST^2 and T^3 models demand a separate treatment, since their
representative Jordan algebras are Euclidean or only admit non-zero elements of
rank 3, respectively. Finally, we also consider minimally coupled N = 2, matter
coupled N = 3, and "pure" N = 5 theories.Comment: 40 pages, 9 tables. References added. Expanded comments added to
sections III. C. 1. and III. F.
Renormalization and black hole entropy in Loop Quantum Gravity
Microscopic state counting for a black hole in Loop Quantum Gravity yields a
result proportional to horizon area, and inversely proportional to Newton's
constant and the Immirzi parameter. It is argued here that before this result
can be compared to the Bekenstein-Hawking entropy of a macroscopic black hole,
the scale dependence of both Newton's constant and the area must be accounted
for. The two entropies could then agree for any value of the Immirzi parameter,
if a certain renormalization property holds.Comment: 8 pages; v2: references added, typos corrected, version to appear in
CQ
Performance of differenced range data types in Voyager navigation
Voyager radio navigation made use of a differenced rage data type for both Saturn encounters because of the low declination singularity of Doppler data. Nearly simultaneous two-way range from two-station baselines was explicitly differenced to produce this data type. Concurrently, a differential VLBI data type (DDOR), utilizing doubly differenced quasar-spacecraft delays, with potentially higher precision was demonstrated. Performance of these data types is investigated on the Jupiter-to-Saturn leg of Voyager 2. The statistics of performance are presented in terms of actual data noise comparisons and sample orbit estimates. Use of DDOR as a primary data type for navigation to Uranus is discussed
Evaluation of positive G sub Z tolerance following simulated weightlessness (bedrest)
The magnitude of physiologic changes which are known to occur in human subjects exposed to varying levels of + G sub Z acceleration following bed rest simulation of weightlessness was studied. Bed rest effects were documented by fluid and electrolyte balance studies, maximal exercise capability, 70 deg passive tilt and lower body negative pressure tests and the ability to endure randomly prescribed acceleration profiles of +2G sub Z, +3G sub Z, and +4G sub Z. Six healthy male volunteers were studied during two weeks of bed rest after adequate control observations, followed by two weeks of recovery, followed by a second two-week period of bed rest at which time an Air Force cutaway anti-G suit was used to determine its effectiveness as a countermeasure for observed cardiovascular changes during acceleration. Results showed uniform and significant changes in all measured parameters as a consequence of bed rest including a reduced ability to tolerate +G sub Z acceleration. The use of anti-G suits significantly improved subject tolerance to all G exposures and returned measured parameters such as heart rate and blood pressure towards or to pre-bed-rest (control) values in four of the six cases
Black holes admitting a Freudenthal dual
The quantised charges x of four dimensional stringy black holes may be
assigned to elements of an integral Freudenthal triple system whose
automorphism group is the corresponding U-duality and whose U-invariant quartic
norm Delta(x) determines the lowest order entropy. Here we introduce a
Freudenthal duality x -> \tilde{x}, for which \tilde{\tilde{x}}=-x. Although
distinct from U-duality it nevertheless leaves Delta(x) invariant. However, the
requirement that \tilde{x} be integer restricts us to the subset of black holes
for which Delta(x) is necessarily a perfect square. The issue of higher-order
corrections remains open as some, but not all, of the discrete U-duality
invariants are Freudenthal invariant. Similarly, the quantised charges A of
five dimensional black holes and strings may be assigned to elements of an
integral Jordan algebra, whose cubic norm N(A) determines the lowest order
entropy. We introduce an analogous Jordan dual A*, with N(A) necessarily a
perfect cube, for which A**=A and which leaves N(A) invariant. The two
dualities are related by a 4D/5D lift.Comment: 32 pages revtex, 10 tables; minor corrections, references adde
- …