759 research outputs found
The News Media and the Politics of Inequality in Advanced Democracies
What has allowed inequalities in material resources to mount in advanced democracies? This chapter considers the role of media reporting on the economy in weakening accountability mechanisms that might otherwise have incentivized governments to pursue more equal outcomes. Building on prior work on the United States, we investigate how journalistic depictions of the economy relate to real distributional developments across OECD countries. Using sentiment analysis of economic news content, we demonstrate that the evaluative content of the economic news strongly and disproportionately tracks the fortunes of the very rich and that good (bad) economic news is more common in periods of rising (falling) income shares at the top. We then propose and test an explanation in which pro-rich biases in news tone arise from a journalistic focus on the performance of the economy in the aggregate, while aggregate growth is itself positively correlated with relative gains for the rich. The chapter’s findings suggest that the democratic politics of inequality may be shaped in important ways by the skewed nature of the informational environment within which citizens form economic evaluations
Using anchoring motifs for the computational design of protein–protein interactions
The computer-based design of protein-protein interactions is a challenging problem because large desolvation and entropic penalties must be overcome by the creation of favorable hydrophobic and polar contacts at the target interface. Indeed, many computationally designed interactions fail to form when tested in the laboratory. Here, we highlight strategies our laboratory has been pursuing to make interface design more tractable. Our general approach has been to make use of structural motifs found in native proteins that are predisposed to interact with a particular binding geometry, and then further bolster these anchor points with favorable hydrophobic contacts. We describe the use of three different anchor points – β-strand pairing, metal binding, and the docking of an α-helix into a groove – to successfully design new interfaces. In several cases high- resolution crystal structures show that the design models closely match the experimental structure. Additionally, we have tested the use of buried hydrogen bond networks as a source of affinity and specificity at interfaces. In these cases the designed complexes did not form, highlighting the challenges associated with designing buried polar interactions
Boosting protein stability with the computational design of β-sheet surfaces: Computational Design of β-Sheet Surfaces
β‐sheets often have one face packed against the core of the protein and the other facing solvent. Mutational studies have indicated that the solvent‐facing residues can contribute significantly to protein stability, and that the preferred amino acid at each sequence position is dependent on the precise structure of the protein backbone and the identity of the neighboring amino acids. This suggests that the most advantageous methods for designing β‐sheet surfaces will be approaches that take into account the multiple energetic factors at play including side chain rotamer preferences, van der Waals forces, electrostatics, and desolvation effects. Here, we show that the protein design software Rosetta, which models these energetic factors, can be used to dramatically increase protein stability by optimizing interactions on the surfaces of small β‐sheet proteins. Two design variants of the β‐sandwich protein from tenascin were made with 7 and 14 mutations respectively on its β‐sheet surfaces. These changes raised the thermal midpoint for unfolding from 45°C to 64°C and 74°C. Additionally, we tested an empirical approach based on increasing the number of potential salt bridges on the surfaces of the β‐sheets. This was not a robust strategy for increasing stability, as three of the four variants tested were unfolded
SwiftLib: rapid degenerate-codon-library optimization through dynamic programming
Degenerate codon (DC) libraries efficiently address the experimental library-size limitations of directed evolution by focusing diversity toward the positions and toward the amino acids (AAs) that are most likely to generate hits; however, manually constructing DC libraries is challenging, error prone and time consuming. This paper provides a dynamic programming solution to the task of finding the best DCs while keeping the size of the library beneath some given limit, improving on the existing integer-linear programming formulation. It then extends the algorithm to consider multiple DCs at each position, a heretofore unsolved problem, while adhering to a constraint on the number of primers needed to synthesize the library. In the two library-design problems examined here, the use of multiple DCs produces libraries that very nearly cover the set of desired AAs while still staying within the experimental size limits. Surprisingly, the algorithm is able to find near-perfect libraries where the ratio of amino-acid sequences to nucleic-acid sequences approaches 1; it effectively side-steps the degeneracy of the genetic code. Our algorithm is freely available through our web server and solves most design problems in about a second
Pretargeted delivery of PEG-coated drug carriers to breast tumors using multivalent, bispecific antibody against polyethylene glycol and HER2
Pretargeting is an increasingly explored strategy to improve nanoparticle targeting, in which pretargeting molecules that bind both selected epitopes on target cells and nanocarriers are first administered, followed by the drug-loaded nanocarriers. Bispecific antibodies (bsAb) represent a promising class of pretargeting molecules, but how different bsAb formats may impact the efficiency of pretargeting remains poorly understood, in particular Fab valency and Fc receptor (FcR)-binding of bsAb. We found the tetravalent bsAb markedly enhanced PEGylated nanoparticle binding to target HER2+ cells relative to the bivalent bsAb in vitro. Pretargeting with tetravalent bsAb with abrogated FcR binding increased tumor accumulation of PEGylated liposomal doxorubicin (PLD) 3-fold compared to passively targeted PLD alone, and 5-fold vs pretargeting with tetravalent bsAb with normal FcR binding in vivo. Our work demonstrates that multivalency and elimination of FcRn recycling are both important features of pretargeting molecules, and further supports pretargeting as a promising nanoparticle delivery strategy
Region-Specific Myelin Pathology in Mice Lacking the Golli Products of the Myelin Basic Protein Gene
The myelin basic protein (MBP) gene encodes two families of proteins, the classic MBP constituents of myelin and the golli-MBPs, the function of which is less well understood. In this study, targeted ablation of the golli-MBPs, but not the classic MBPs, resulted in a distinct phenotype unlike that of knock-outs (KOs) of the classic MBPs or other myelin proteins. Although the golli KO animals did not display an overt dysmyelinating phenotype, they did exhibit delayed and/or hypomyelination in selected areas of the brain, such as the visual cortex and the optic nerve, as determined by Northern and Western blots and immunohistochemical analysis with myelin protein markers. Hypomyelination in some areas, such as the visual cortex, persisted into adulthood. Ultrastructural analysis of the KOs confirmed both the delay and hypomyelination and revealed abnormalities in myelin structure and in some oligodendrocytes. Abnormal visual-evoked potentials indicated that the hypomyelination in the visual cortex had functional consequences in the golli KO brain. Evidence that the abnormal myelination in these animals was a consequence of intrinsic problems with the oligodendrocyte was indicated by an impaired ability of oligodendrocytes to form myelin sheets in culture and by the presence of abnormal Ca^(2+) transients in purified cortical oligodendrocytes studied in vitro. The Ca^(2+) results reported in this study complement previous results implicating golli proteins in modulating intracellular signaling in T-cells. Together, all these findings suggest a role for golli proteins in oligodendrocyte differentiation, migration, and/or myelin elaboration in the brain
Placebo response in binge eating disorder
Objective: Placebo response in studies of binge eating disorder (BED) has raised concern about its diagnostic stability. The aims of this study were (1) to compare placebo responders (PRs) with nonresponders (NRs); (2) to investigate the course of BED following placebo response; and (3) to examine attributions regarding placebo response. Method: The baseline placebo run-in phase (BL) was part of a RCT investigating sibutramine hydrochloride for BED; it included 451 participants, ages 19–63, diagnosed with BED. Follow-up (FU) included 33 PRs. Results: In this study, 32.6% of participants responded to placebo (PRs = 147; NRs = 304). PRs exhibited significantly less symptom severity. At FU (n = 33), many PRs reported continued symptoms. Conclusion: PRs exhibited significantly less severe pathology than NRs. Placebo response in BED may transitory or incomplete. The results of this study suggest variable stability in the BED diagnosis
Continental aridification and the vanishing of Australia\u27s megalakes
The nature of the Australian climate at about the time of rapid megafaunal extinctions and humans arriving in Australia is poorly understood and is an important element in the contentious debate as to whether humans or climate caused the extinctions. Here we present a new paleoshoreline chronology that extends over the past 100 k.y. for Lake Mega-Frome, the coalescence of Lakes Frome, Blanche, Callabonna and Gregory, in the southern latitudes of central Australia. We show that Lake Mega-Frome was connected for the last time to adjacent Lake Eyre at 50-47 ka, forming the largest remaining interconnected system of paleolakes on the Australian continent. The final disconnection and a progressive drop in the level of Lake Mega-Frome represents a major climate shift to aridification that coincided with the arrival of humans and the demise of the megafauna. The supply of moisture to the Australian continent at various times in the Quaternary has commonly been ascribed to an enhanced monsoon. This study, in combination with other paleoclimate data, provides reliable evidence for periods of enhanced tropical and enhanced Southern Ocean sources of water filling these lakes at different times during the last full glacial cycle. © 2011 Geological Society of America
- …