1,554 research outputs found
Expression of Ciona intestinalis AOX causes male reproductive defects in Drosophila melanogaster
Background: Mitochondrial alternative respiratory-chain enzymes are phylogenetically widespread, and buffer stresses affecting oxidative phosphorylation in species that possess them. However, they have been lost in the evolutionary lineages leading to vertebrates and arthropods, raising the question as to what survival or reproductive disadvantages they confer. Recent interest in using them in therapy lends a biomedical dimension to this question. Methods: Here, we examined the impact of the expression of Ciona intestinalis alternative oxidase, AOX, on the reproductive success of Drosophila melanogaster males. Sperm-competition assays were performed between flies carrying three copies of a ubiquitously expressed AOX construct, driven by the a-tubulin promoter, and wild-type males of the same genetic background. Results: In sperm-competition assays, AOX conferred a substantial disadvantage, associated with decreased production of mature sperm. Sperm differentiation appeared to proceed until the last stages, but was spatially deranged, with spermatozoids retained in the testis instead of being released to the seminal vesicle. High AOX expression was detected in the outermost cell-layer of the testis sheath, which we hypothesize may disrupt a signal required for sperm maturation. Conclusions: AOX expression in Drosophila thus has effects that are deleterious to male reproductive function. Our results imply that AOX therapy must be developed with caution.Peer reviewe
Expression of Ciona intestinalis AOX causes male reproductive defects in Drosophila melanogaster
Background: Mitochondrial alternative respiratory-chain enzymes are phylogenetically widespread, and buffer stresses affecting oxidative phosphorylation in species that possess them. However, they have been lost in the evolutionary lineages leading to vertebrates and arthropods, raising the question as to what survival or reproductive disadvantages they confer. Recent interest in using them in therapy lends a biomedical dimension to this question. Methods: Here, we examined the impact of the expression of Ciona intestinalis alternative oxidase, AOX, on the reproductive success of Drosophila melanogaster males. Sperm-competition assays were performed between flies carrying three copies of a ubiquitously expressed AOX construct, driven by the a-tubulin promoter, and wild-type males of the same genetic background. Results: In sperm-competition assays, AOX conferred a substantial disadvantage, associated with decreased production of mature sperm. Sperm differentiation appeared to proceed until the last stages, but was spatially deranged, with spermatozoids retained in the testis instead of being released to the seminal vesicle. High AOX expression was detected in the outermost cell-layer of the testis sheath, which we hypothesize may disrupt a signal required for sperm maturation. Conclusions: AOX expression in Drosophila thus has effects that are deleterious to male reproductive function. Our results imply that AOX therapy must be developed with caution.Peer reviewe
Lethal Interaction of Nuclear and Mitochondrial Genotypes in Drosophila melanogaster
Drosophila melanogaster, like most animal species, displays considerable genetic variation in both nuclear and mitochondrial DNA (mtDNA). Here we tested whether any of four natural mtDNA variants was able to modify the effect of the phenotypically mild, nuclear tko(25t) mutation, affecting mitochondrial protein synthesis. When combined with tko(25t), the mtDNA from wild strain KSA2 produced pupal lethality, accompanied by the presence of melanotic nodules in L3 larvae. KSA2 mtDNA, which carries a substitution at a conserved residue of cytochrome b that is predicted to be involved in subunit interactions within respiratory complex III, conferred drastically decreased respiratory capacity and complex III activity in the tko(25t) but not a wild-type nuclear background. The complex III inhibitor antimycin A was able to phenocopy effects of the tko(25t) mutation in the KSA2 mtDNA background. This is the first report of a lethal, nuclear-mitochondrial interaction within a metazoan species, representing a paradigm for understanding genetic interactions between nuclear and mitochondrial genotype relevant to human health and disease.Peer reviewe
Optimal control of entanglement via quantum feedback
It has recently been shown that finding the optimal measurement on the
environment for stationary Linear Quadratic Gaussian control problems is a
semi-definite program. We apply this technique to the control of the
EPR-correlations between two bosonic modes interacting via a parametric
Hamiltonian at steady state. The optimal measurement turns out to be nonlocal
homodyne measurement -- the outputs of the two modes must be combined before
measurement. We also find the optimal local measurement and control technique.
This gives the same degree of entanglement but a higher degree of purity than
the local technique previously considered [S. Mancini, Phys. Rev. A {\bf 73},
010304(R) (2006)].Comment: 10 pages, 5 figure
Structural rearrangements in the mitochondrial genome of Drosophila melanogaster induced by elevated levels of the replicative DNA helicase
Pathological conditions impairing functions of mitochondria often lead to compensatory upregulation of the mitochondrial DNA (mtDNA) replisome machinery, and the replicative DNA helicase appears to be a key factor in regulating mtDNA copy number. Moreover, mtDNA helicase mutations have been associated with structural rearrangements of themitochondrial genome. To evaluate the effects of elevated levels of the mtDNA helicase on the integrity and replication of the mitochondrial genome, we overexpressed the helicase in Drosophila melanogaster Schneider cells and analyzed the mtDNA by two-dimensional neutral agarose gel electrophoresis and electron microscopy. We found that elevation of mtDNA helicase levels increases the quantity of replication intermediates and alleviates pausing at the replication slow zones. Though we did not observe a concomitant alteration in mtDNA copy number, we observed deletions specific to the segment of repeated elements in the immediate vicinity of the origin of replication, and an accumulation of species characteristic of replication fork stalling. We also found elevated levels of RNA that are retained in the replication intermediates. Together, our results suggest that upregulation of mtDNA helicase promotes the process of mtDNA replication but also results in genome destabilization.Peer reviewe
A cytoplasmic suppressor of a nuclear mutation affecting mitochondrial functions in Drosophila
Phenotypes relevant to oxidative phosphorylation (OXPHOS) in eukaryotes are jointly determined by nuclear and mitochondrial DNA (mtDNA). Thus, in humans, the variable clinical presentations of mitochondrial disease patients bearing the same primary mutation, whether in nuclear or mitochondrial DNA, have been attributed to putative genetic determinants carried in the other genome, though their identity and the molecular mechanism(s) by which they might act remain elusive. Here we demonstrate cytoplasmic suppression of the mitochondrial disease-like phenotype of the Drosophila melanogaster nuclear mutant tko25t, which includes developmental delay, seizure sensitivity, and defective male courtship. The tko25t strain carries a mutation in a mitoribosomal protein gene, causing OXPHOS deficiency due to defective intramitochondrial protein synthesis. Phenotypic suppression was associated with increased mtDNA copy number and increased mitochondrial biogenesis, as measured by the expression levels of porin voltage dependent anion channel and Spargel (PGC1α). Ubiquitous overexpression of Spargel in tko25t flies phenocopied the suppressor, identifying it as a key mechanistic target thereof. Suppressor-strain mtDNAs differed from related nonsuppressor strain mtDNAs by several coding-region polymorphisms and by length and sequence variation in the noncoding region (NCR), in which the origin of mtDNA replication is located. Cytoplasm from four of five originally Wolbachia-infected strains showed the same suppressor effect, whereas that from neither of two uninfected strains did so, suggesting that the stress of chronic Wolbachia infection may provide evolutionary selection for improved mitochondrial fitness under metabolic stress. Our findings provide a paradigm for understanding the role of mtDNA genotype in human disease
A cytoplasmic suppressor of a nuclear mutation affecting mitochondrial functions in Drosophila
Phenotypes relevant to oxidative phosphorylation (OXPHOS) in eukaryotes are jointly determined by nuclear and mitochondrial DNA (mtDNA). Thus, in humans, the variable clinical presentations of mitochondrial disease patients bearing the same primary mutation, whether in nuclear or mitochondrial DNA, have been attributed to putative genetic determinants carried in the other genome, though their identity and the molecular mechanism(s) by which they might act remain elusive. Here we demonstrate cytoplasmic suppression of the mitochondrial disease-like phenotype of the Drosophila melanogaster nuclear mutant tko25t, which includes developmental delay, seizure sensitivity, and defective male courtship. The tko25t strain carries a mutation in a mitoribosomal protein gene, causing OXPHOS deficiency due to defective intramitochondrial protein synthesis. Phenotypic suppression was associated with increased mtDNA copy number and increased mitochondrial biogenesis, as measured by the expression levels of porin voltage dependent anion channel and Spargel (PGC1α). Ubiquitous overexpression of Spargel in tko25t flies phenocopied the suppressor, identifying it as a key mechanistic target thereof. Suppressor-strain mtDNAs differed from related nonsuppressor strain mtDNAs by several coding-region polymorphisms and by length and sequence variation in the noncoding region (NCR), in which the origin of mtDNA replication is located. Cytoplasm from four of five originally Wolbachia-infected strains showed the same suppressor effect, whereas that from neither of two uninfected strains did so, suggesting that the stress of chronic Wolbachia infection may provide evolutionary selection for improved mitochondrial fitness under metabolic stress. Our findings provide a paradigm for understanding the role of mtDNA genotype in human disease
EPIC 220204960: A Quadruple Star System Containing Two Strongly Interacting Eclipsing Binaries
We present a strongly interacting quadruple system associated with the K2
target EPIC 220204960. The K2 target itself is a Kp = 12.7 magnitude star at
Teff ~ 6100 K which we designate as "B-N" (blue northerly image). The host of
the quadruple system, however, is a Kp = 17 magnitude star with a composite
M-star spectrum, which we designate as "R-S" (red southerly image). With a 3.2"
separation and similar radial velocities and photometric distances, 'B-N' is
likely physically associated with 'R-S', making this a quintuple system, but
that is incidental to our main claim of a strongly interacting quadruple system
in 'R-S'. The two binaries in 'R-S' have orbital periods of 13.27 d and 14.41
d, respectively, and each has an inclination angle of >89 degrees. From our
analysis of radial velocity measurements, and of the photometric lightcurve, we
conclude that all four stars are very similar with masses close to 0.4 Msun.
Both of the binaries exhibit significant ETVs where those of the primary and
secondary eclipses 'diverge' by 0.05 days over the course of the 80-day
observations. Via a systematic set of numerical simulations of quadruple
systems consisting of two interacting binaries, we conclude that the outer
orbital period is very likely to be between 300 and 500 days. If sufficient
time is devoted to RV studies of this faint target, the outer orbit should be
measurable within a year.Comment: 20 pages, 18 figures, 7 tables; accepted for publication in MNRA
Coherent motion of stereocilia assures the concerted gating of hair-cell transduction channels
The hair cell's mechanoreceptive organelle, the hair bundle, is highly
sensitive because its transduction channels open over a very narrow range of
displacements. The synchronous gating of transduction channels also underlies
the active hair-bundle motility that amplifies and tunes responsiveness. The
extent to which the gating of independent transduction channels is coordinated
depends on how tightly individual stereocilia are constrained to move as a
unit. Using dual-beam interferometry in the bullfrog's sacculus, we found that
thermal movements of stereocilia located as far apart as a bundle's opposite
edges display high coherence and negligible phase lag. Because the mechanical
degrees of freedom of stereocilia are strongly constrained, a force applied
anywhere in the hair bundle deflects the structure as a unit. This feature
assures the concerted gating of transduction channels that maximizes the
sensitivity of mechanoelectrical transduction and enhances the hair bundle's
capacity to amplify its inputs.Comment: 24 pages, including 6 figures, published in 200
A second hybrid-binding domain modulates the activity of Drosophila ribonuclease H1
In eukaryotes, ribonuclease H1 (RNase H1) is involved in the processing and removal of RNA/DNA hybrids in both nuclear and mitochondrial DNA. The enzyme comprises a C-terminal catalytic domain and an N-terminal hybrid-binding domain (HBD), separated by a linker of variable length, 115 amino acids in Drosophila melanogaster (Dm). Molecular modelling predicted this extended linker to fold into a structure similar to the conserved HBD. Based on a deletion series, both the catalytic domain and the conserved HBD were required for high-affinity binding to heteroduplex substrates, while loss of the novel HBD led to an similar to 90% drop in K-cat with a decreased K-M, and a large increase in the stability of the RNA/DNA hybrid-enzyme complex, supporting a bipartite-binding model in which the second HBD facilitates processivity. Shotgun proteomics following in vivo cross-linking identified single-stranded DNA-binding proteins from both nuclear and mitochondrial compartments, respectively RpA-70 and mtSSB, as prominent interaction partners of Dm RNase H1. However, we were not able to document direct and stable interactions with mtSSB when the proteins were cooverexpressed in S2 cells, and functional interactions between them in vitro were minor.Peer reviewe
- …