42 research outputs found

    Imaging Myosin-X at the Single-Molecule Level Reveals a Novel Form of Motility in Filopodia

    Get PDF
    Although many proteins, receptors, and viruses are transported rearward along filopodia by retrograde actin flow[1-3], it is less clear how molecules move forward in filopodia. Myosin-X (Myo10) is an actin-based motor hypothesized to use its motor activity to move forward along actin filaments to the tips of filopodia[4]. Here we use a sensitive total internal reflection fluorescence (TIRF) microscopy system to directly visualize the movements of GFP-Myo10. This reveals a novel form of motility at or near the single-molecule level in living cells wherein extremely faint particles of Myo10 move in a rapid and directed fashion towards the filopodial tip. These fast forward movements occur at ∼600 nm/s over distances of up to ∼10 μm and require Myo10 motor activity and actin filaments. As expected for imaging at the single-molecule level, the faint particles of GFP-Myo10 are diffraction-limited, have an intensity range similar to single GFP molecules, and exhibit stepwise bleaching. Faint particles of GFP-Myo5a can also move towards the filopodial tip, but at a slower characteristic velocity of ∼250 nm/s. Similar movements were not detected with GFP-Myo1a, indicating that not all myosins are capable of intrafilopodial motility. These data indicate the existence of a novel system of long-range transport based on the rapid movement of myosin molecules along filopodial actin filaments

    Transduced viral IL-10 is exocytosed from lacrimal acinar secretory vesicles in a myosin-dependent manner in response to carbachol

    Get PDF
    The purpose of this study was to determine the intracellular trafficking and release pathways for the therapeutic protein, viral IL-10 (vIL-10), from transduced acinar epithelial cells from rabbit lacrimal gland. Primary cultured rabbit lacrimal gland acinar cells (LGACs) were transduced with adenovirus serotype 5 containing viral interleukin-10 (AdvIL-10). The distribution of vIL-10 was assessed by confocal fluorescence microscopy. Carbachol (CCH)-stimulated release of vIL-10 was quantified by ELISA. vIL-10 localization and exocytosis was probed in response to treatments with agents modulating actin- and myosin-based transport. vIL-10 immunoreactivity was detected in large intracellular vesicles in transduced LGAC. vIL-10 was partially co-localized with biosynthetic but not endosomal compartment markers. vIL-10 release was sensitive to CCH, and the kinetics of release showed an initial burst phase that was similar but not identical to that of the secretory protein, β-hexosaminidase. Disassembly of actin filaments with latrunculin B significantly increased CCH-stimulated vIL-10 secretion, suggesting that vIL-10 was released from stores sequestered beneath the subapical actin barrier. That release required the activity of actin-dependent myosin motors previously implicated in secretory vesicle exocytosis was confirmed by findings that CCH-stimulated vIL-10 release was reduced by inhibition of non-muscle myosin 2 and myosin 5c function, using ML-7 and overexpression of dominant negative myosin 5c, respectively. These results suggest that the majority of vIL-10 transgene product is packaged into a subpopulation of secretory vesicles that utilize actin-dependent myosin motors for aspects of actin coat assembly, compound fusion and exocytosis at the apical plasma membrane in response to CCH stimulation

    Intracellular Distribution-based Anticancer Drug Targeting: Exploiting a Lysosomal Acidification Defect Associated with Cancer Cells

    No full text
    This is the published version, also available here: http://mcpharmacol.com/index.php/Journals/article/view/103.The therapeutic usefulness of anticancer agents relies on their ability to exert maximal toxicity to cancer cells and minimal toxicity to normal cells. The difference between these two parameters defines the therapeutic index of the agent. Towards this end, much research has focused on the design of anticancer agents that have optimized potency against a variety of cancer cell types; however, much less effort is spent on the design of drugs that are minimally toxic to normal cells. We have previously described a concept for a novel drug delivery platform that relies on the propensity of drugs with optimal physicochemical properties to distribute differently in normal versus cancer cells due to differences in intracellular pH gradients. Specifically, we demonstrated in vitro that certain weakly basic anticancer agents had the propensity to distribute to intracellular locations in normal cells that prevent interaction with the drug target, and to intracellular locations in cancer cells that promote drug-target interactions. We refer to this concept broadly as intracellular distribution-based drug targeting. Here we will discuss current in vivo work from our laboratory that examined the role of lysosome pH on the intracellular distribution and toxicity of inhibitors of the Hsp90 molecular chaperone in mice

    A Novel Form of Motility in Filopodia Revealed by Imaging Myosin-X at the Single-Molecule Level

    Get PDF
    SummaryAlthough many proteins, receptors, and viruses are transported rearward along filopodia by retrograde actin flow [1–3], it is less clear how molecules move forward in filopodia. Myosin-X (Myo10) is an actin-based motor hypothesized to use its motor activity to move forward along actin filaments to the tips of filopodia [4]. Here we use a sensitive total internal reflection fluorescence (TIRF) microscopy system to directly visualize the movements of GFP-Myo10. This reveals a novel form of motility at or near the single-molecule level in living cells wherein extremely faint particles of Myo10 move in a rapid and directed fashion toward the filopodial tip. These fast forward movements occur at ∼600 nm/s over distances of up to ∼10 μm and require Myo10 motor activity and actin filaments. As expected for imaging at the single-molecule level, the faint particles of GFP-Myo10 are diffraction limited, have an intensity range similar to single GFP molecules, and exhibit stepwise bleaching. Faint particles of GFP-Myo5a can also move toward the filopodial tip, but at a slower characteristic velocity of ∼250 nm/s. Similar movements were not detected with GFP-Myo1a, indicating that not all myosins are capable of intrafilopodial motility. These data indicate the existence of a novel system of long-range transport based on the rapid movement of myosin molecules along filopodial actin filaments
    corecore