12 research outputs found

    High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients

    Get PDF
    Approximately 25% of all patients with stage II colorectal cancer will experience recurrent disease and subsequently die within 5 years. MicroRNA-21 (miR-21) is upregulated in several cancer types and has been associated with survival in colon cancer. In the present study we developed a robust in situ hybridization assay using high-affinity Locked Nucleic Acid (LNA) probes that specifically detect miR-21 in formalin-fixed paraffin embedded (FFPE) tissue samples. The expression of miR-21 was analyzed by in situ hybridization on 130 stage II colon and 67 stage II rectal cancer specimens. The miR-21 signal was revealed as a blue chromogenic reaction, predominantly observed in fibroblast-like cells located in the stromal compartment of the tumors. The expression levels were measured using image analysis. The miR-21 signal was determined as the total blue area (TB), or the area fraction relative to the nuclear density (TBR) obtained using a red nuclear stain. High TBR (and TB) estimates of miR-21 expression correlated significantly with shorter disease-free survival (p = 0.004, HR = 1.28, 95% CI: 1.06–1.55) in the stage II colon cancer patient group, whereas no significant correlation with disease-free survival was observed in the stage II rectal cancer group. In multivariate analysis both TB and TBR estimates were independent of other clinical parameters (age, gender, total leukocyte count, K-RAS mutational status and MSI). We conclude that miR-21 is primarily a stromal microRNA, which when measured by image analysis identifies a subgroup of stage II colon cancer patients with short disease-free survival

    Syntaxin 1A interaction with the dopamine transporter promotes amphetamine-induced dopamine efflux

    No full text
    The SNARE protein syntaxin1A (SYN1A) interacts with and regulates the function of transmembrane proteins including ion channels and neurotransmitter transporters. Here we define the first 33 amino acids of the N-terminus of the dopamine (DA) transporter (DAT) as the site of direct interaction with SYN1A. Amphetamine (AMPH) increases the association of SYN1A with human DAT (hDAT) in a heterologous expression system (hDAT cells) and with native DAT in murine striatal synaptosomes. Immunoprecipitation of DAT from the biotinylated fraction shows that the AMPH-induced increase in DAT/SYN1A association occurs at the plasma membrane. In a superfusion assay of DA efflux, cells overexpressing SYN1A exhibited significantly greater AMPH-induced DA release with respect to control cells. By combining the patch clamp technique with amperometry we measured DA release under voltage clamp. At −60 mV, a physiological resting potential, AMPH did not induce DA efflux in hDAT cells and DA neurons. In contrast, perfusion of exogenous SYN1A (3 µM) into the cell with the whole-cell pipette enabled AMPH-induced DA efflux at −60 mV both in hDAT cells and DA neurons. Recently, it has been shown that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated by AMPH and regulates AMPH-induced DA efflux. Here we show that AMPH-induced association between DAT and SYN1A requires CaMKII activity and that inhibition of CaMKII blocks the ability of exogenous SYN1A to promote DA efflux. These data suggest that AMPH activation of CaMKII supports DAT/SYN1A association, resulting in a mode of DAT capable of DA efflux

    Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport

    Get PDF
    SummaryEfflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIα bound to the distal C terminus of DAT and colocalized with DAT in dopaminergic neurons. CaMKIIα stimulated dopamine efflux via DAT in response to amphetamine in heterologous cells and in dopaminergic neurons. CaMKIIα phosphorylated serines in the distal N terminus of DAT in vitro, and mutation of these serines eliminated the stimulatory effects of CaMKIIα. A mutation of the DAT C terminus impairing CaMKIIα binding also impaired amphetamine-induced dopamine efflux. An in vivo role for CaMKII was supported by chronoamperometry measurements showing reduced amphetamine-induced dopamine efflux in response to the CaMKII inhibitor KN93. Our data suggest that CaMKIIα binding to the DAT C terminus facilitates phosphorylation of the DAT N terminus and mediates amphetamine-induced dopamine efflux
    corecore