56,961 research outputs found

    Diapause in the Boll Weevil, Anthonontus grandis Boheman, As Related to Fruiting Activity in the Cotton Plant

    Get PDF
    Studies in Arkansas show that boll weevil diapause is related to changes in fruiting activity of the cotton plant. Generally, when larval development took place while fruiting levels were increasing or being held at a high level, diapause in resulting adults was low (0-20%). Diapause was approximately 20-50% when larval development coincided with decreasing fruiting levels, and was 50-100% as true cut-out approached. Regrowth cotton generally lowered diapause incidence and as fruiting levels decreased, diapause increased. Therefore, the boll weevil not only responds to short photoperiods that are characteristic during the fall in the temperate zone, but also may respond throughout the season to changes in fruiting activity of the cotton plant

    A Sub-block Based Image Retrieval Using Modified Integrated Region Matching

    Full text link
    This paper proposes a content based image retrieval (CBIR) system using the local colour and texture features of selected image sub-blocks and global colour and shape features of the image. The image sub-blocks are roughly identified by segmenting the image into partitions of different configuration, finding the edge density in each partition using edge thresholding followed by morphological dilation. The colour and texture features of the identified regions are computed from the histograms of the quantized HSV colour space and Gray Level Co- occurrence Matrix (GLCM) respectively. The colour and texture feature vectors is computed for each region. The shape features are computed from the Edge Histogram Descriptor (EHD). A modified Integrated Region Matching (IRM) algorithm is used for finding the minimum distance between the sub-blocks of the query and target image. Experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods.Comment: 7 page

    Optimized Unrestricted Kohn-Sham Potentials from Ab Initio Spin Densities

    Full text link
    The reconstruction of the exchange-correlation potential from accurate ab initio electron densities can provide insights into the limitations of the currently available approximate functionals and provide guidance for devising improved approximations for density-functional theory (DFT). For open-shell systems, the spin density is introduced as an additional fundamental variable in Spin-DFT. Here, we consider the reconstruction of the corresponding unrestricted Kohn-Sham potentials from accurate ab initio spin densities. In particular, we investigate whether it is possible to reconstruct the spin exchange-correlation potential, which determines the spin density in spin-unrestricted Kohn-Sham-DFT, despite the numerical difficulties inherent to the optimization of potentials with finite orbital basis sets. We find that the recently developed scheme for unambiguously singling out an optimal optimized potential [J. Chem. Phys. 135, 244102 (2011)] can provide such spin potentials accurately. This is demonstrated for two test cases, the lithium atom and the dioxygen molecule, and target (spin) densities from Full-CI and CASSCF calculations, respectively
    corecore