9 research outputs found

    Effects of Acute Aerobic Exercise on Cognition and Constructs of Decision-Making in Adults With and Without Hypertension

    Get PDF
    Hypertension accelerates brain aging, resulting in cognitive dysfunction with advancing age. Exercise is widely recommended for adults with hypertension to attenuate cognitive dysfunction. Whether acute exercise benefits cognitive function in this at-risk population is unknown. The purpose of this study was to compare the effects of acute aerobic exercise on cognitive function in 30 middle-aged hypertensive (HTN) and 30 age, sex, and body mass index (BMI)-matched non-HTN adults (56 ± 6 years, BMI 28.2 ± 2.9 kg/m2; 32 men). Subjects underwent cognitive testing pre/post 30-min cycling (≈55% peak oxygen consumption). Cognition was assessed using standard metrics of accuracy and reaction time (RT) across memory recognition, 2-back, and Flanker tasks. Behavioral data was further analyzed using drift-diffusion modeling to examine underlying components of decision-making (strength of evidence, caution, bias) and RT (non-decision time). Exercise elicited similar changes in cognitive function in both HTN and non-HTN groups (p > 0.05). Accuracy was unaltered for Flanker and 2-back tasks, while hits and false alarms increased for memory recognition post-exercise (p < 0.05). Modeling results indicated changes in memory hits/false alarms were due to significant changes in stimulus bias post-exercise. RT decreased for Flanker and memory recognition tasks and was driven by reductions in post-exercise non-decision time (p < 0.05). Our data indicate acute exercise resulted in similar, beneficial cognitive responses in both middle-age HTN and non-HTN adults, marked by unaltered task accuracy, and accelerated RT post-exercise. Additionally, drift-diffusion modeling revealed that beneficial acceleration of cognitive processing post-exercise (RT) is driven by changes in non-decision components (encoding/motor response) rather than the decision-making process itself

    Exploration of cerebral hemodynamic pathways through which large artery function affects neurovascular coupling in young women

    Get PDF
    Background The interactions between large artery function and neurovascular coupling (NVC) are emerging as important contributors to cognitive health. Women are disproportionally affected by Alzheimer's disease and related dementia later in life. Understanding large artery correlates of NVC in young women may help with preservation of cognitive health with advancing age. Purpose To explore the association between large artery function, NVC and cognitive performance in young women. Methods Vascular measurements were made in 61 women (21 ± 4 yrs) at rest and during a cognitive challenge (Stroop task). Transcranial Doppler was used to measure left middle cerebral artery (MCA) maximum velocity (Vmax), mean velocity (Vmean), and pulsatility index (PI). NVC was determined as MCA blood velocity reactivity to the Stroop task. Large artery function was determined using carotid-femoral pulse wave velocity (cfPWV) as a proxy measure of aortic stiffness and carotid ultrasound-derived measures of compliance and reactivity (diameter change to the Stroop task). Cognitive function was assessed separately using a computerized neurocognitive battery that included appraisal of response speed, executive function, information processing efficiency, memory, attention/concentration, and impulsivity. Results MCA Vmax reactivity was positively associated with executive function (β = 0.26, 95% CI 0.01–0.10); MCA Vmean reactivity was negatively associated with response speed (β = −0.33, 95% CI −0.19 to −0.02) and positively with memory score (β = 0.28, 95% CI 0.01–0.19). MCA PI reactivity was negatively associated with attention performance (β = −0.29, 95% CI −14.9 to −1.0). Path analyses identified significant paths (p < 0.05) between carotid compliance and carotid diameter reactivity to select domains of cognitive function through MCA reactivity. Conclusions NVC was associated with cognitive function in young women. Carotid artery function assessed as carotid compliance and carotid reactivity may contribute to optimal NVC in young women through increased blood flow delivery and reduced blood flow pulsatility

    Human skeletal muscle metabolic economy in vivo:effects of contraction intensity, age and mobility impairment

    No full text
    We tested the hypothesis that older muscle has greater metabolic economy (ME) in vivo than young, in a manner dependent, in part, on contraction intensity. Twenty young (Y; 24 ± 1 yr, 10 women), 18 older healthy (O; 73 ± 2, 9 women) and 9 older individuals with mild-to-moderate mobility impairment (OI; 74 ± 1, 7 women) received stimulated twitches (2 Hz, 3 min) and performed nonfatiguing voluntary (20, 50, and 100% maximal; 12 s each) isometric dorsiflexion contractions. Torque-time integrals (TTI; Nm·s) were calculated and expressed relative to maximal fat-free muscle cross-sectional area (cm(2)), and torque variability during voluntary contractions was calculated as the coefficient of variation. Total ATP cost of contraction (mM) was determined from flux through the creatine kinase reaction, nonoxidative glycolysis and oxidative phosphorylation, and used to calculate ME (Nm·s·cm(−2)·mM ATP(−1)). While twitch torque relaxation was slower in O and OI compared with Y (P ≤ 0.001), twitch TTI, ATP cost, and economy were similar across groups (P ≥ 0.15), indicating comparable intrinsic muscle economy during electrically induced isometric contractions in vivo. During voluntary contractions, normalized TTI and total ATP cost did not differ significantly across groups (P ≥ 0.20). However, ME was lower in OI than Y or O at 20% and 50% MVC (P ≤ 0.02), and torque variability was greater in OI than Y or O at 20% MVC (P ≤ 0.05). These results refute the hypothesis of greater muscle ME in old age, and provide support for lower ME in impaired older adults as a potential mechanism or consequence of age-related reductions in functional mobility
    corecore