7 research outputs found

    In-Situ absolute phase detection of a microwave field via incoherent fluorescence

    Full text link
    Measuring the amplitude and the absolute phase of a monochromatic microwave field at a specific point of space and time has many potential applications, including precise qubit rotations and wavelength quantum teleportation. Here we show how such a measurement can indeed be made using resonant atomic probes, via detection of incoherent fluorescence induced by a laser beam. This measurement is possible due to self-interference effects between the positive and negative frequency components of the field. In effect, the small cluster of atoms here act as a highly localized pick-up coil, and the fluorescence channel acts as a transmission line.Comment: 13 pages, 5 figure

    Determination of the phase of an electromagnetic field via incoherent detection of fluorescence

    Full text link
    We show that the phase of a field can be determined by incoherent detection of the population of one state of a two-level system if the Rabi frequency is comparable to the Bohr frequency so that the rotating wave approximation is inappropriate. This implies that a process employing the measurement of population is not a square-law detector in this limit. We discuss how the sensitivity of the degree of excitation to the phase of the field may pose severe constraints on precise rotations of quantum bits involving low-frequency transitions. We present a scheme for observing this effect in an atomic beam, despite the spread in the interaction time.Comment: 4 pages, 2 fig

    The MAPS Adaptive Secondary Mirror: First Light, Laboratory Work, and Achievements

    Full text link
    The MMT Adaptive Optics exoPlanet Characterization System (MAPS) is a comprehensive update to the first generation MMT adaptive optics system (MMTAO), designed to produce a facility class suite of instruments whose purpose is to image nearby exoplanets. The system's adaptive secondary mirror (ASM), although comprised in part of legacy components from the MMTAO ASM, represents a major leap forward in engineering, structure and function. The subject of this paper is the design, operation, achievements and technical issues of the MAPS adaptive secondary mirror. We discuss laboratory preparation for on-sky engineering runs, the results of those runs and the issues we discovered, what we learned about those issues in a follow-up period of laboratory work, and the steps we are taking to mitigate them.Comment: 22 pages, 22 images, 2 tables, submitted to SPIE Proceedings (Unconventional Imaging, Sensing and Adaptive Optics 2023 Conference

    Design and development of a high-speed visible pyramid wavefront sensor for the MMT AO system

    No full text
    MAPS, MMT Adaptive optics exoPlanet characterization System, is the upgrade of the adaptive optics system for 6.5-m MMT. It is an NSF MSIP-funded project that includes developing an adaptive-secondary mirror, visible and near-infrared pyramid wavefront sensors, and the upgrade of Arizona infrared imager and echelle spectrograph (ARIES) and MMT High Precision Imaging Polarimeter (MMTPol) science cameras. This paper will present the design and development of the visible pyramid wavefront sensor, VPWFS. It consists of an acquisition camera, a fast-steering tip-tilt modulation mirror, a pyramid, a pupil imaging triplet lens, and a low noise and high-speed frame rate based CCID75 camera. We will report on hardware and software, present the laboratory characterization results of individual subsystems, and outline the on-sky commissioning plan. © 2020 SPIE.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Quantum Optics and Photonics

    No full text
    Contains table of contents for Part II, table of contents for Section 1, and reports on nine research projects.U.S. Air Force - Office of Scientific Research/AASERT Grant F49620-96-1-0308U.S. Air Force - Research Laboratory Grant F30602-97-C-0136U.S. Air Force - Rome Laboratory Grant F30602-97-2-0101U.S. Air Force - Rome Laboratory Grant F30602-97-2-0100National Science Foundation Grant ECS 94-21304U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0395U.S. Air Force - Rome Laboratory Grant F30602-96-2-0100U.S. Air Force - Office of Scientific Research/AASERTU.S. Ballistic Missile Defense OrganizationU.S. Air Force - Office of Scientific Research Grant F49620-95-1-0510U.S. Army Research OfficeIdaho National Energy Laborator
    corecore