21,273 research outputs found
Embedding the Reissner-Nordstrom spacetime in Euclidean and Minkowski spaces
We examine embedding diagrams of hypersurfaces in the Reissner-Nordstrom
black hole spacetime. These embedding diagrams serve as useful tools to
visualize the geometry of the hypersurfaces and of the whole spacetime in
general.Comment: 13 pages, 10 figure
In-Situ absolute phase detection of a microwave field via incoherent fluorescence
Measuring the amplitude and the absolute phase of a monochromatic microwave
field at a specific point of space and time has many potential applications,
including precise qubit rotations and wavelength quantum teleportation. Here we
show how such a measurement can indeed be made using resonant atomic probes,
via detection of incoherent fluorescence induced by a laser beam. This
measurement is possible due to self-interference effects between the positive
and negative frequency components of the field. In effect, the small cluster of
atoms here act as a highly localized pick-up coil, and the fluorescence channel
acts as a transmission line.Comment: 13 pages, 5 figure
Light Assisted Collisional Loss in a Rb Ultracold Optical Trap
We have studied hetero- and homonuclear excited state/ground state collisions
by loading both Rb and Rb into a far off resonant trap (FORT).
Because of the relatively weak confinement of the FORT, we expect the hyperfine
structure of the different isotopes to play a crucial role in the collision
rates. This dependence on hyperfine structure allows us to measure collisions
associated with long range interatomic potentials of different structure: such
as long and short ranged; or such as purely attractive, purely repulsive, or
mixed attractive and repulsive. We observe significantly different loss rates
for different excited state potentials. Additionally, we observe that some
collisional channels' loss rates are saturated at our operating intensities
(~15 mW/cm). These losses are important limitations in loading dual
isotope optical traps.Comment: about 8 pages, 5 figure
High-Performance Silicon-Based Multiple Wavelength Source
We demonstrate a stable CMOS-compatible on-chip multiple-wavelength source by
filtering and modulating individual lines from a frequency comb generated by a
microring resonator optical parametric oscillator.. We show comb operation in a
low-noise state that is stable and usable for many hours. Bit-error rate
measurements demonstrate negligible power penalty from six independent
frequencies when compared to a tunable diode laser baseline. Open eye diagrams
confirm the fidelity of the 10 Gb/s data transmitted at the comb frequencies
and the suitability of this device for use as a fully integrated silicon-based
WDM source.Comment: 3 pages, 3 figure
The bound on viscosity and the generalized second law of thermodynamics
We describe a new paradox for ideal fluids. It arises in the accretion of an
\textit{ideal} fluid onto a black hole, where, under suitable boundary
conditions, the flow can violate the generalized second law of thermodynamics.
The paradox indicates that there is in fact a lower bound to the correlation
length of any \textit{real} fluid, the value of which is determined by the
thermodynamic properties of that fluid. We observe that the universal bound on
entropy, itself suggested by the generalized second law, puts a lower bound on
the correlation length of any fluid in terms of its specific entropy. With the
help of a new, efficient estimate for the viscosity of liquids, we argue that
this also means that viscosity is bounded from below in a way reminiscent of
the conjectured Kovtun-Son-Starinets lower bound on the ratio of viscosity to
entropy density. We conclude that much light may be shed on the
Kovtun-Son-Starinets bound by suitable arguments based on the generalized
second law.Comment: 11 pages, 1 figure, published versio
Superoperator Analysis of Entanglement in a Four-Qubit Cluster State
In this paper we utilize superoperator formalism to explore the entanglement
evolution of four-qubit cluster states in a number of decohering environments.
A four-qubit cluster state is a resource for the performance of an arbitrary
single logical qubit rotation via measurement based cluster state quantum
computation. We are specifically interested in the relationship between
entanglement evolution and the fidelity with which the arbitrary single logical
qubit rotation can be implemented in the presence of decoherence as this will
have important experimental ramifications. We also note the exhibition of
entanglement sudden death (ESD) and ask how severely its onset affects the
utilization of the cluster state as a means of implementing an arbitrary single
logical qubit rotation.Comment: 9 pages, 9 composite figures, presentation of results completely
rewritte
- …