563 research outputs found

    Altered renal hemodynamics and impaired myogenic responses in the fawn-hooded rat

    Get PDF
    The present study examined whether an abnormality in the myogenic response of renal arterioles that impairs autoregulation of renal blood flow (RBF) and glomerular capillary pressure (PGC) contributes to the development of renal damage in fawn-hooded hypertensive (FHH) rats. Autoregulation of whole kidney, cortical, and medullary blood flow and PGC were compared in young (12 wk old) FHH and fawn-hooded low blood pressure (FHL) rats in volume-replete and volume-expanded conditions. Baseline RBF, cortical and medullary blood flow, and PGC were significantly greater in FHH than in FHL rats. Autoregulation of renal and cortical blood flow was significantly impaired in FHH rats compared with results obtained in FHL rats. Myogenically mediated autoregulation of PGC was significantly greater in FHL than in FHH rats. PGC rose from 46 +/- 1 to 71 +/- 2 mmHg in response to an increase in renal perfusion pressure from 100 to 150 mmHg in FHH rats, whereas it only increased from 39 +/- 2 to 53 +/- 1 mmHg in FHL rats. Isolated perfused renal interlobular arteries from FHL rats constricted by 10% in response to elevations in transmural pressure from 70 to 120 mmHg. In contrast, the diameter of vessels from FHH rats increased by 15%. These results indicate that the myogenic response of small renal arteries is altered in FHH rats, and this contributes to an impaired autoregulation of renal blood flow and elevations in PGC in this strain

    Impaired autoregulation of renal blood flow in the fawn-hooded rat

    Get PDF
    The responses to changes in renal perfusion pressure (RPP) were compared in 12-wk-old fawn-hooded hypertensive (FHH), fawn-hooded low blood pressure (FHL), and August Copenhagen Irish (ACI) rats to determine whether autoregulation of renal blood flow (RBF) is altered in the FHH rat. Mean arterial pressure was significantly higher in conscious, chronically instrumented FHH rats than in FHL rats (121 +/- 4 vs. 109 +/- 6 mmHg). Baseline arterial pressures measured in ketamine-Inactin-anesthetized rats averaged 147 +/- 2 mmHg (n = 9) in FHH, 132 +/- 2 mmHg (n = 10) in FHL, and 123 +/- 4 mmHg (n = 9) in ACI rats. Baseline RBF was significantly higher in FHH than in FHL and ACI rats and averaged 9.6 +/- 0.7, 7.4 +/- 0.5, and 7.8 +/- 0.9 ml. min-1. g kidney wt-1, respectively. RBF was autoregulated in ACI and FHL but not in FHH rats. Autoregulatory indexes in the range of RPPs from 100 to 150 mmHg averaged 0.96 +/- 0.12 in FHH vs. 0.42 +/- 0.04 in FHL and 0.30 +/- 0.02 in ACI rats. Glomerular filtration rate was 20-30% higher in FHH than in FHL and ACI rats. Elevations in RPP from 100 to 150 mmHg increased urinary protein excretion in FHH rats from 27 +/- 2 to 87 +/- 3 microg/min, whereas it was not significantly altered in FHL or ACI rats. The percentage of glomeruli exhibiting histological evidence of injury was not significantly different in the three strains of rats. These results indicate that autoregulation of RBF is impaired in FHH rats before the development of glomerulosclerosis and suggest that an abnormality in the control of renal vascular resistance may contribute to the development of proteinuria and renal failure in this strain of rats

    Application of a stochastic weather generator to assess climate change impacts in a semi-arid climate: The Upper Indus Basin

    Get PDF
    Assessing local climate change impacts requires downscaling from Global Climate Model simulations. Here, a stochastic rainfall model (RainSim) combined with a rainfall conditioned weather generator (CRU WG) have been successfully applied in a semi-arid mountain climate, for part of the Upper Indus Basin (UIB), for point stations at a daily time-step to explore climate change impacts. Validation of the simulated time-series against observations (1961–1990) demonstrated the models’ skill in reproducing climatological means of core variables with monthly RMSE of <2.0 mm for precipitation and ⩽0.4 °C for mean temperature and daily temperature range. This level of performance is impressive given complexity of climate processes operating in this mountainous context at the boundary between monsoonal and mid-latitude (westerly) weather systems. Of equal importance the model captures well the observed interannual variability as quantified by the first and last decile of 30-year climatic periods. Differences between a control (1961–1990) and future (2071–2100) regional climate model (RCM) time-slice experiment were then used to provide change factors which could be applied within the rainfall and weather models to produce perturbed ‘future’ weather time-series. These project year-round increases in precipitation (maximum seasonal mean change:+27%, annual mean change: +18%) with increased intensity in the wettest months (February, March, April) and year-round increases in mean temperature (annual mean +4.8 °C). Climatic constraints on the productivity of natural resource-dependent systems were also assessed using relevant indices from the European Climate Assessment (ECA) and indicate potential future risk to water resources and local agriculture. However, the uniformity of projected temperature increases is in stark contrast to recent seasonally asymmetrical trends in observations, so an alternative scenario of extrapolated trends was also explored. We conclude that interannual variability in climate will continue to have the dominant impact on water resources management whichever trajectory is followed. This demonstrates the need for sophisticated downscaling methods which can evaluate changes in variability and sequencing of events to explore climate change impacts in this region

    Penrose Limits and RG Flows

    Full text link
    The Penrose-Gueven limit simplifies a given supergravity solution into a pp-wave background. Aiming at clarifying its relation to renormalization group flow we study the Penrose-Guven limit of supergravity backgrounds that are dual to non-conformal gauge theories. The resulting backgrounds fall in a class simple enough that the quantum particle is exactly solvable. We propose a map between the effective time-dependent quantum mechanical problem and the RG flow in the gauge theory. As a testing ground we consider explicitly two Penrose limits of the infrared fixed point of the Pilch-Warner solution. We analyze the corresponding gauge theory picture and write down the operators which are the duals of the low lying string states. We also address RG flows of a different nature by considering the Penrose-Gueven limit of a stack of N D_p branes. We note that in the far IR (for p<3)the limit generically has negative mass-squared. This phenomenon signals, in the world sheet picture, the necessity to transform to another description. In this regard, we consider explicitly the cases of M2 from D2 and F1 from D1 .Comment: 35 pp, 6 figure

    The Importance of Cognitive Diversity for Sustaining the Commons

    Get PDF
    Cognitive abilities underpin the capacity of individuals to build models of their environment and make decisions about how to govern resources. Here, we test the functional intelligences proposition that functionally diverse cognitive abilities within a group are critical to govern common pool resources. We assess the effect of two cognitive abilities, social and general intelligence, on group performance on a resource harvesting and management game involving either a negative or a positive disturbance to the resource base. Our results indicate that under improving conditions (positive disturbance) groups with higher general intelligence perform better. However, when conditions deteriorate (negative disturbance) groups with high competency in both general and social intelligence are less likely to deplete resources and harvest more. Thus, we propose that a functional diversity of cognitive abilities improves how effectively social groups govern common pool resources, especially when conditions deteriorate and groups need to re-evaluate and change their behaviors
    corecore