22,316 research outputs found

    Mechanical, Electrical, and Magnetic Properties of Ni Nanocontacts

    Get PDF
    The dynamic deformation upon stretching of Ni nanowires as those formed with mechanically controllable break junctions or with a scanning tunneling microscope is studied both experimentally and theoretically. Molecular dynamics simulations of the breaking process are performed. In addition, and in order to compare with experiments, we also compute the transport properties in the last stages before failure using the first-principles implementation of Landauer's formalism included in our transport package ALACANT.Comment: 5 pages, 6 figure

    Figures of merit and constraints from testing General Relativity using the latest cosmological data sets including refined COSMOS 3D weak lensing

    Full text link
    We use cosmological constraints from current data sets and a figure of merit (FoM) approach to probe any deviations from general relativity (GR) at cosmological scales. The FoM approach is used to study the constraining power of various combinations of data sets on modified gravity (MG) parameters. We use recently refined HST-COSMOS weak-lensing tomography data, ISW-galaxy cross correlations from 2MASS and SDSS LRG surveys, matter power spectrum from SDSS-DR7 (MPK), WMAP7 temperature and polarization spectra, BAO from 2DF and SDSS-DR7, and Union2 compilation of supernovae, in addition to other bounds from H_0 measurements and BBN. We use 3 parametrizations of MG parameters that enter the perturbed field equations. In order to allow for variations with redshift and scale, the first 2 parametrizations use recently suggested functional forms while the third is based on binning methods. Using the first parametrization, we find that CMB + ISW + WL provides the strongest constraints on MG parameters followed by CMB+WL or CMB+MPK+ISW. Using the second parametrization or binning methods, CMB+MPK+ISW consistently provides some of the strongest constraints. This shows that the constraints are parametrization dependent. We find that adding up current data sets does not improve consistently uncertainties on MG parameters due to tensions between best-fit MG parameters preferred by different data sets. Furthermore, some functional forms imposed by the parametrizations can lead to an exacerbation of these tensions. Next, unlike some studies that used the CFHTLS lensing data, we do not find any deviation from GR using the refined HST-COSMOS data, confirming previous claims in those studies that their result may have been due to some systematic effect. Finally, we find in all cases that the values corresponding to GR are within the 95% confidence level contours for all data set combinations. (abridged)Comment: 18 pages, 6 figures, matches version published in PR

    Hyperatlas: A New Framework for Image Federation

    Get PDF
    Hyperatlas is an open standard intended to facilitate the large-scale federation of image-based data. The subject of hyperatlas is the space of sphere-to-plane projection mappings (the FITS-WCS information), and the standard consists of coherent collections of these on which data can be resampled and thereby federated with other image data. We hope for a distributed effort that will produce a multi-faceted image atlas of the sky, made by federating many different surveys at different wavelengths and different times. We expect that hyperatlas-compliant imagery will be published and discovered through an International Virtual Observatory Alliance (IVOA) registry, and that grid-based services will emerge for the required resampling and mosaicking.Comment: Published in ADASS XIII proceeding

    Atlasmaker: A Grid-based Implementation of the Hyperatlas

    Get PDF
    The Atlasmaker project is using Grid technology, in combination with NVO interoperability, to create new knowledge resources in astronomy. The product is a multi-faceted, multi-dimensional, scientifically trusted image atlas of the sky, made by federating many different surveys at different wavelengths, times, resolutions, polarizations, etc. The Atlasmaker software does resampling and mosaicking of image collections, and is well-suited to operate with the Hyperatlas standard. Requests can be satisfied via on-demand computations or by accessing a data cache. Computed data is stored in a distributed virtual file system, such as the Storage Resource Broker (SRB). We expect these atlases to be a new and powerful paradigm for knowledge extraction in astronomy, as well as a magnificent way to build educational resources. The system is being incorporated into the data analysis pipeline of the Palomar-Quest synoptic survey, and is being used to generate all-sky atlases from the 2MASS, SDSS, and DPOSS surveys for joint object detection.Comment: Published in the Proceedings of ADASS XI

    Instrument to collect fogwater for chemical analysis

    Get PDF
    An instrument is presented which collects large samples of ambient fogwater by impaction of droplets on a screen. The collection efficiency of the instrument is determined as a function of droplet size, and it is shown that fog droplets in the range 3–100-”m diameter are efficiently collected. No significant evaporation or condensation occurs at any stage of the collection process. Field testing indicates that samples collected are representative of the ambient fogwater. The instrument may easily be automated, and is suitable for use in routine air quality monitoring programs

    The Computational Power of Minkowski Spacetime

    Full text link
    The Lorentzian length of a timelike curve connecting both endpoints of a classical computation is a function of the path taken through Minkowski spacetime. The associated runtime difference is due to time-dilation: the phenomenon whereby an observer finds that another's physically identical ideal clock has ticked at a different rate than their own clock. Using ideas appearing in the framework of computational complexity theory, time-dilation is quantified as an algorithmic resource by relating relativistic energy to an nnth order polynomial time reduction at the completion of an observer's journey. These results enable a comparison between the optimal quadratic \emph{Grover speedup} from quantum computing and an n=2n=2 speedup using classical computers and relativistic effects. The goal is not to propose a practical model of computation, but to probe the ultimate limits physics places on computation.Comment: 6 pages, LaTeX, feedback welcom

    Seismic Tremor Reveals Spatial Organization and Temporal Changes of Subglacial Water System

    Get PDF
    ©2019. American Geophysical Union. All Rights Reserved.Subglacial water ïŹ‚ow impacts glacier dynamics and shapes the subglacial environment. However, due to the challenges of observing glacier beds, the spatial organization of subglacial water systems and the time scales of conduit evolution and migration are largely unknown. To address these questions, we analyze 1.5‐ to 10‐Hz seismic tremor that we associate with subglacial water ïŹ‚ow, that is, glaciohydraulic tremor, at Taku Glacier, Alaska, throughout the 2016 melt season. We use frequency‐dependent polarization analysis to estimate glaciohydraulic tremor propagation direction (related to the subglacial conduit location) and a degree day melt model to monitor variations in melt‐water input. We suggest that conduit formation requires sustained water input and that multiconduit ïŹ‚ow paths can be distinguished from single‐conduit ïŹ‚ow paths. Theoretical analysis supports our seismic interpretations that subglacial discharge likely ïŹ‚ows through a single‐conduit in regions of steep hydraulic potential gradients but may be distributed among multiple conduits in regions with shallower potential gradients. Seismic tremor in regions with multiple conduits evolves through abrupt jumps between stable conïŹgurations that last 3–7 days, while tremor produced by single‐conduit ïŹ‚ow remains more stationary. We also ïŹnd that polarized glaciohydraulic tremor wave types are potentially linked to the distance from source to station and that multiple peak frequencies propagate from a similar direction. Tremor appears undetectable at distances beyond 2–6 km from the source. This new understanding of the spatial organization and temporal development of subglacial conduits informs our understanding of dynamism within the subglacial hydrologic system.Raw seismic data described in this paper are available through the Incorporated Research Institutions for Seismology Data Management Center (http://ds.iris.edu/mda/ZQ? timewindow=2015‐2016; Amundson et al., 2015). The raw weather data used in this paper can be found through the Arctic Data Center (https://doi.org/ 10.18739/A2H98ZC7V; Bartholomaus & Walter, 2018). Python code developed to carry out the analyses presented here is available at https://github.com/ voremargot/Seismic‐Tremor‐Reveals‐ Spatial‐Organization‐and‐Temporal‐ Changes‐of Subglacial‐Water‐System and https://github.com/ tbartholomaus/med_spec. This study was made possible with support from the University of Texas Institute for Geophysics and the University of Idaho. We thank Ginny Catania for the loan of weather stations. J. P. W.'s and J. M. A.'s contributions to this work were supported by the U.S. National Science Foundation (OPP‐1337548 and OPP‐ 1303895). T. C. B. thanks Dylan Mikesell for an early conversation, which inspired the analysis presented here.Ye

    Seismic Tremor Reveals Spatial Organization and Temporal Changes of Subglacial Water System

    Get PDF
    ©2019. American Geophysical Union. All Rights Reserved.Subglacial water ïŹ‚ow impacts glacier dynamics and shapes the subglacial environment. However, due to the challenges of observing glacier beds, the spatial organization of subglacial water systems and the time scales of conduit evolution and migration are largely unknown. To address these questions, we analyze 1.5‐ to 10‐Hz seismic tremor that we associate with subglacial water ïŹ‚ow, that is, glaciohydraulic tremor, at Taku Glacier, Alaska, throughout the 2016 melt season. We use frequency‐dependent polarization analysis to estimate glaciohydraulic tremor propagation direction (related to the subglacial conduit location) and a degree day melt model to monitor variations in melt‐water input. We suggest that conduit formation requires sustained water input and that multiconduit ïŹ‚ow paths can be distinguished from single‐conduit ïŹ‚ow paths. Theoretical analysis supports our seismic interpretations that subglacial discharge likely ïŹ‚ows through a single‐conduit in regions of steep hydraulic potential gradients but may be distributed among multiple conduits in regions with shallower potential gradients. Seismic tremor in regions with multiple conduits evolves through abrupt jumps between stable conïŹgurations that last 3–7 days, while tremor produced by single‐conduit ïŹ‚ow remains more stationary. We also ïŹnd that polarized glaciohydraulic tremor wave types are potentially linked to the distance from source to station and that multiple peak frequencies propagate from a similar direction. Tremor appears undetectable at distances beyond 2–6 km from the source. This new understanding of the spatial organization and temporal development of subglacial conduits informs our understanding of dynamism within the subglacial hydrologic system.Raw seismic data described in this paper are available through the Incorporated Research Institutions for Seismology Data Management Center (http://ds.iris.edu/mda/ZQ? timewindow=2015‐2016; Amundson et al., 2015). The raw weather data used in this paper can be found through the Arctic Data Center (https://doi.org/ 10.18739/A2H98ZC7V; Bartholomaus & Walter, 2018). Python code developed to carry out the analyses presented here is available at https://github.com/ voremargot/Seismic‐Tremor‐Reveals‐ Spatial‐Organization‐and‐Temporal‐ Changes‐of Subglacial‐Water‐System and https://github.com/ tbartholomaus/med_spec. This study was made possible with support from the University of Texas Institute for Geophysics and the University of Idaho. We thank Ginny Catania for the loan of weather stations. J. P. W.'s and J. M. A.'s contributions to this work were supported by the U.S. National Science Foundation (OPP‐1337548 and OPP‐ 1303895). T. C. B. thanks Dylan Mikesell for an early conversation, which inspired the analysis presented here.Ye
    • 

    corecore