2,531 research outputs found

    Rashba spin-orbit coupling in the square lattice Hubbard model: A truncated-unity functional renormalization group study

    Full text link
    The Rashba-Hubbard model on the square lattice is the paradigmatic case for studying the effect of spin-orbit coupling, which breaks spin and inversion symmetry, in a correlated electron system. We employ a truncated-unity variant of the functional renormalization group which allows us to analyze magnetic and superconducting instabilities on equal footing. We derive phase diagrams depending on the strengths of Rasbha spin-orbit coupling, real second-neighbor hopping and electron filling. We find commensurate and incommensurate magnetic phases which compete with d-wave superconductivity. Due to the breaking of inversion symmetry, singlet and triplet components mix; we quantify the mixing of d-wave singlet pairing with f-wave triplet pairing.Comment: 9 pages, 7 figure

    Antigen and Cell-Based Assays for the Detection of Non-HLA Antibodies

    Get PDF
    To date, human leukocyte antigens (HLA) have been the major focus in the approach to acute and chronic antibody-mediated rejection (AMBR) in solid-organ transplantation. However, evidence from the clinic and published studies has shown that non-HLA antibodies, particularly anti-endothelial cell antibodies (AECAs), are found either in the context of AMBR or synergistically in the presence of donor-specific anti-HLA antibodies (DSA). Numerous studies have explored the influence of AECAs on clinical outcomes, yet the determination of the exact clinical relevance of non-HLA antibodies in organ transplantation is not fully established. This is due to highly heterogeneous study designs including differences in testing methods and outcome measures. Efforts to develop reliable and sensitive diagnostic non-HLA antibody tests are continuously made. This is essential considering the technical difficulties of non-HLA antibody assays and the large variation in reported incidences of antibodies. In addition, it is important to take donor specificity into account in order to draw clinically relevant conclusions from non-HLA antibody assays. Here, we provide an overview of non-HLA solid-phase and cell-based crossmatch assays for use in solid-organ transplantation that are currently available, either in a research setting or commercially

    Effect of BG-Lures on the Male Aedes (Diptera: Culicidae) Sound Trap capture rates

    Get PDF
    With global expansion of the two main vectors of dengue, Aedes aegypti (Linnaeus, Diptera: Culicidae) and Aedes albopictus (Skuse, Diptera: Culicidae), there is a need to further develop cost-effective and user-friendly surveillance tools to monitor the population dynamics of these species. The abundance of Ae. aegypti and Ae. Albopictus, and associated bycatch captured by Male Aedes Sound Traps (MASTs) and BG-Sentinel (BGS) traps that were unbaited or baited with BG-Lures were compared in Cairns, Australia and Madang, Papua New Guinea. Mean male Ae. aegypti and Ae. albopictus catch rates in MASTs did not significantly differ when deployed with BG-Lures. Similarly, males of both these species were not sampled at statistically different rates in BGS traps with or without BG-Lures. However, MASTs with BG-Lures caught significantly less male Ae. aegypti than BGS traps baited with BG-Lures in Cairns, and MASTs without BG-Lures caught significantly more male Ae. albopictus than BGS traps without BG-Lures in Madang. Additionally, BG-Lures significantly increased female Ae. aegypti catch rates in BGS traps in Cairns. Lastly, bycatch capture rates in BGS traps were not significantly influenced by the addition of the BG-Lures. While this study provides useful information regarding the surveillance of Ae. aegypti and Ae. albopictus in these locations, further development and investigation is required to successfully integrate an olfactory lure into the MAST system

    Urinary Properdin and sC5b-9 Are Independently Associated With Increased Risk for Graft Failure in Renal Transplant Recipients

    Get PDF
    The pathophysiology of late kidney-allograft failure remains complex and poorly understood. Activation of filtered or locally produced complement may contribute to the progression of renal failure through tubular C5b-9 formation. This study aimed to determine urinary properdin and sC5b-9 excretion and assess their association with long-term outcome in renal transplant recipients (RTR). Methods: We measured urinary properdin and soluble C5b-9 in a well-defined cross-sectional cohort of RTR. Urinary specimens were taken from a morning urine portion, and properdin and sC5b-9 were measured using an enzyme-linked-immunosorbent assay (ELISA). Cox proportional hazard regression analyses were used to investigate prospective associations with death-censored graft failure. Results: We included 639 stable RTR at a median [interquartile range] 5.3 (1.8-12.2) years after transplantation. Urinary properdin and sC5b-9 excretion were detectable in 161 (27%) and 102 (17%) RTR, respectively, with a median properdin level of 27.6 (8.6-68.1) ng/mL and a median sC5b-9 level of 5.1 (2.8-12.8) ng/mL. In multivariable-adjusted Cox regression analyses, including adjustment for proteinuria, urinary properdin (HR, 1.12; 95% CI 1.02-1.28; P = 0.008) and sC5b-9 excretion (HR, 1.34; 95% CI 1.10-1.63; P = 0.003) were associated with an increased risk of graft failure. If both urinary properdin and sC5b-9 were detectable, the risk of graft failure was further increased (HR, 3.12; 95% CI 1.69-5.77; P < 0.001). Conclusions: Our findings point toward a potential role for urinary complement activation in the pathogenesis of chronic allograft failure. Urinary properdin and sC5b-9 might be useful biomarkers for complement activation and chronic kidney allograft deterioration, suggesting a potential role for an alternative pathway blockade in RTR

    Unintended health and societal consequences of international travel measures during the COVID-19 pandemic: A scoping review

    Get PDF
    RATIONALE FOR REVIEW International travel measures to contain the COVID-19 pandemic represent a relatively intrusive form of non-pharmaceutical intervention. To inform decision-making on the (re)implementation, adaptation, relaxation or suspension of such measures, it is essential to not only assess their effectiveness but also their unintended effects. This scoping review maps existing empirical studies on the unintended consequences, both predicted and unforeseen, and beneficial or harmful, of international travel measures. We searched multiple health, non-health and COVID-19-specific databases. The evidence was charted in a map in relation to the study design, intervention and outcome categories identified and discussed narratively. KEY FINDINGS Twenty-three studies met our inclusion criteria-nine quasi-experimental, two observational, two mathematical modelling, six qualitative, and four mixed-methods studies. Studies addressed different population groups across various countries worldwide. Seven studies provided information on unintended consequences of the closure of national borders, six looked at international travel restrictions, and three investigated mandatory quarantine of international travelers. No studies looked at entry and/or exit screening at national borders exclusively, however six studies considered this intervention in combination with other international travel measures. In total, eleven studies assessed various combinations of the aforementioned interventions. The outcomes were mostly referred to by the authors as harmful. Fifteen studies identified a variety of economic consequences, six reported on aspects related to quality of life, well-being, and mental health, and five on social consequences. One study each provided information on equity, equality, and the fair distribution of benefits and burdens, environmental consequences and health system consequences. CONCLUSIONS/RECOMMENDATIONS This scoping review represents the first step towards a systematic assessment of the unintended benefits and harms of international travel measures during COVID-19. The key research gaps identified might be filled with targeted primary research, as well as the additional consideration of gray literature and non-empirical studies

    Understanding and Visualizing Droplet Distributions in Simulations of Shallow Clouds

    Full text link
    Thorough analysis of local droplet-level interactions is crucial to better understand the microphysical processes in clouds and their effect on the global climate. High-accuracy simulations of relevant droplet size distributions from Large Eddy Simulations (LES) of bin microphysics challenge current analysis techniques due to their high dimensionality involving three spatial dimensions, time, and a continuous range of droplet sizes. Utilizing the compact latent representations from Variational Autoencoders (VAEs), we produce novel and intuitive visualizations for the organization of droplet sizes and their evolution over time beyond what is possible with clustering techniques. This greatly improves interpretation and allows us to examine aerosol-cloud interactions by contrasting simulations with different aerosol concentrations. We find that the evolution of the droplet spectrum is similar across aerosol levels but occurs at different paces. This similarity suggests that precipitation initiation processes are alike despite variations in onset times.Comment: 4 pages, 3 figures, accepted at NeurIPS 2023 (Machine Learning and the Physical Sciences Workshop

    Direct Evidence of Endothelial Dysfunction and Glycocalyx Loss in Dermal Biopsies of Patients With Chronic Kidney Disease and Their Association With Markers of Volume Overload

    Get PDF
    Cardiovascular morbidity is a major problem in patients with chronic kidney disease (CKD) and endothelial dysfunction (ED) is involved in its development. The luminal side of the vascular endothelium is covered by a protective endothelial glycocalyx (eGC) and indirect evidence indicates eGC loss in CKD patients. We aimed to investigate potential eGC loss and ED in skin biopsies of CKD patients and their association with inflammation and volume overload. During living kidney transplantation procedure, abdominal skin biopsies were taken from 11 patients with chronic kidney disease stage 5 of whom 4 were treated with hemodialysis and 7 did not receive dialysis treatment. Nine healthy kidney donors served as controls. Biopsies were stained and quantified for the eGC marker Ulex europaeus agglutinin-1 (UEA1) and the endothelial markers vascular endothelial growth factor-2 (VEGFR2) and von Willebrand factor (vWF) after double staining and normalization for the pan-endothelial marker cluster of differentiation 31. We also studied associations between quantified log-transformed dermal endothelial markers and plasma markers of inflammation and hydration status. Compared to healthy subjects, there was severe loss of the eGC marker UEA1 (P &lt; 0.01) while VEGFR2 was increased in CKD patients, especially in those on dialysis (P = 0.01). For vWF, results were comparable between CKD patients and controls. Skin water content was identical in the three groups, which excluded dermal edema as an underlying cause in patients with CKD. The dermal eGC/ED markers UEA1, VEGFR2, and vWF all associated with plasma levels of NT-proBNP and sodium (all R2 &gt; 0.29 and P &lt; 0.01), except for vWF that only associated with plasma NT-proBNP. This study is the first to show direct histopathological evidence of dermal glycocalyx loss and ED in patients with CKD. In line with previous research, our results show that ED associates with markers of volume overload arguing for strict volume control in CKD patients

    Capillary Assembly of Anisotropic Particles at Cylindrical Fluid-Fluid Interfaces

    Get PDF
    The unique behavior of colloids at liquid interfaces provides exciting opportunities for engineering the assembly of colloidal particles into functional materials. The deformable nature of fluid-fluid interfaces means that we can use the interfacial curvature, in addition to particle properties, to direct self-assembly. To this end, we use a finite element method (Surface Evolver) to study the self-assembly of rod-shaped particles adsorbed at a simple curved fluid-fluid interface formed by a sessile liquid drop with cylindrical geometry. Specifically, we study the self-assembly of single and multiple rods as a function of drop curvature and particle properties such as shape (ellipsoid, cylinder, and spherocylinder), contact angle, aspect ratio, and chemical heterogeneity (homogeneous and triblock patchy). We find that the curved interface allows us to effectively control the orientation of the rods, allowing us to achieve parallel, perpendicular, or novel obliquely orientations with respect to the cylindrical drop. In addition, by tuning particle properties to achieve parallel alignment of the rods, we show that the cylindrical drop geometry favors tip-to-tip assembly of the rods, not just for cylinders, but also for ellipsoids and triblock patchy rods. Finally, for triblock patchy rods with larger contact line undulations, we can achieve strong spatial confinement of the rods transverse to the cylindrical drop due to the capillary repulsion between the contact line undulations of the particle and the pinned contact lines of the sessile drop. Our capillary assembly method allows us to manipulate the configuration of single and multiple rod-like particles and therefore offers a facile strategy for organizing such particles into useful functional materials
    corecore