3,390 research outputs found
Plasma microRNA levels following resection of metastatic melanoma
Melanoma remains the leading cause of skin cancer–related deaths. Surgical resection and adjuvant therapies can result in disease-free intervals for stage III and stage IV disease; however, recurrence is common. Understanding microRNA (miR) dynamics following surgical resection of melanomas is critical to accurately interpret miR changes suggestive of melanoma recurrence. Plasma of 6 patients with stage III (n = 2) and stage IV (n = 4) melanoma was evaluated using the NanoString platform to determine pre- and postsurgical miR expression profiles, enabling analysis of more than 800 miRs simultaneously in 12 samples. Principal component analysis detected underlying patterns of miR expression between pre- vs postsurgical patients. Group A contained 3 of 4 patients with stage IV disease (pre- and postsurgical samples) and 2 patients with stage III disease (postsurgical samples only). The corresponding preoperative samples to both individuals with stage III disease were contained in group B along with 1 individual with stage IV disease (pre- and postsurgical samples). Group A was distinguished from group B by statistically significant analysis of variance changes in miR expression ( P < .0001). This analysis revealed that group A vs group B had downregulation of let-7b-5p, miR-520f, miR-720, miR-4454, miR-21-5p, miR-22-3p, miR-151a-3p, miR-378e, and miR-1283 and upregulation of miR-126-3p, miR-223-3p, miR-451a, let-7a-5p, let-7g-5p, miR-15b-5p, miR-16-5p, miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-26a-5p, miR-106a-5p, miR-17-5p, miR-130a-3p, miR-142-3p, miR-150-5p, miR-191-5p, miR-199a-3p, miR-199b-3p, and miR-1976. Changes in miR expression were not readily evident in individuals with distant metastatic disease (stage IV) as these individuals may have prolonged inflammatory responses. Thus, inflammatory-driven miRs coinciding with tumor-derived miRs can blunt anticipated changes in expression profiles following surgical resection
22q11.2 deletion syndrome
22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness - all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population
Recommended from our members
Observations of Reactive Gaseous Mercury in the Free Troposphere at the Mount Bachelor Observatory
We measured gaseous elemental mercury (GEM), particulate mercury (PHg), and reactive gaseous mercury (RGM), along with CO, ozone, and aerosol scatter at the Mount Bachelor Observatory (2.7 km above sea level), Oregon, from May to August 2005. The mean mercury concentrations (at standard conditions) were 1.54 ng/m3 (GEM), 5.2 pg/m3 (PHg), and 43 pg/m3 (RGM). RGM enhancements, up to 600 pg/m3, occurred at night and were linked to a diurnal pattern of upslope and downslope flows that mixed in boundary layer air during the day and free tropospheric air at night. During the night, RGM was inversely correlated (P < 0.0001) with CO (r = −0.36), GEM (r = −0.73), and H2O (r = −0.44), was positively correlated with ozone (r = 0.38), and could not be linked to recent anthropogenic emissions from local sources or long-range transport. Principal component analysis and a composite of change in RGM versus change in GEM during RGM enhancements indicate that a nearly quantitative shift in speciation is associated with increases in ozone and decreases in water vapor and CO. This argues that high concentrations of RGM are present in the free troposphere because of in situ oxidation of GEM to RGM. A global chemical transport model reproduces the RGM mean and diurnal pattern but underestimates the magnitude of the largest observed enhancements. Since the only modeled, in situ RGM production mechanisms are oxidation of GEM by ozone and OH, this implies that there are faster reaction rates or additional RGM production mechanisms in the free troposphere.Earth and Planetary SciencesEngineering and Applied Science
- …