12,733 research outputs found

    One Hub-One Process: A Tool Based View on Regulatory Network Topology

    Get PDF
    The relationship between the regulatory design and the functionality of molecular networks is a key issue in biology. Modules and motifs have been associated to various cellular processes, thereby providing anecdotal evidence for performance based localization on molecular networks. To quantify structure-function relationship we investigate similarities of proteins which are close in the regulatory network of the yeast Saccharomyces Cerevisiae. We find that the topology of the regulatory network show weak remnants of its history of network reorganizations, but strong features of co-regulated proteins associated to similar tasks. This suggests that local topological features of regulatory networks, including broad degree distributions, emerge as an implicit result of matching a number of needed processes to a finite toolbox of proteins.Comment: 18 pages, 3 figures, 5 supplementary figure

    Degree Landscapes in Scale-Free Networks

    Full text link
    We generalize the degree-organizational view of real-world networks with broad degree-distributions in a landscape analogue with mountains (high-degree nodes) and valleys (low-degree nodes). For example, correlated degrees between adjacent nodes corresponds to smooth landscapes (social networks), hierarchical networks to one-mountain landscapes (the Internet), and degree-disassortative networks without hierarchical features to rough landscapes with several mountains. We also generate ridge landscapes to model networks organized under constraints imposed by the space the networks are embedded in, associated to spatial or, in molecular networks, to functional localization. To quantify the topology, we here measure the widths of the mountains and the separation between different mountains.Comment: 4 pages, 5 figure
    corecore