11,873 research outputs found

    Cubic Dresselhaus Spin-Orbit Coupling in 2D Electron Quantum Dots

    Full text link
    We study effects of the oft-neglected cubic Dresselhaus spin-orbit coupling (i.e., p3\propto p^3) in GaAs/AlGaAs quantum dots. Using a semiclassical billiard model, we estimate the magnitude of the spin-orbit induced avoided crossings in a closed quantum dot in a Zeeman field. Using these results, together with previous analyses based on random matrix theory, we calculate corresponding effects on the conductance through an open quantum dot. Combining our results with an experiment on conductance through an 8 um^2 quantum dot [D M Zumbuhl et al., Phys. Rev. B 72, 081305 (2005)] suggests that 1) the GaAs Dresselhaus coupling constant, γ\gamma, is approximately 9 eVA^3, significantly less than the commonly cited value of 27.5 eVA^3 and 2) the majority of the spin-flip component of spin-orbit coupling can come from the cubic Dresselhaus term.Comment: 4 pages plus supplementary tabl

    Nonradiative lifetimes in intermediate band materials - absence of lifetime recovery

    Get PDF
    Intermediate band photovoltaics hold the promise of being highly efficient and cost effective photovoltaic cells. Intermediate states in the band gap, however, are known to facilitate nonradiative recombination. Much effort has been dedicated to producing metallic intermediate bands in hopes of producing lifetime recovery -- an increase in carrier lifetime as doping levels increase. We show that lifetime recovery induced by the insulator-to-metal transition will not occur, because the metallic extended states will be localised by phonons during the recombination process. Only trivial forms of lifetime recovery, e.g., from an overall shift in intermediate levels, are possible. Future work in intermediate band photovoltaics must focus on optimizing subgap optical absorption and minimizing recombination, but not via lifetime recovery.Comment: 8 page

    Scaling and localization lengths of a topologically disordered system

    Get PDF
    We consider a noninteracting disordered system designed to model particle diffusion, relaxation in glasses, and impurity bands of semiconductors. Disorder originates in the random spatial distribution of sites. We find strong numerical evidence that this model displays the same universal behavior as the standard Anderson model. We use finite-size-scaling to find the localization length as a function of energy and density, including localized states away from the delocalization transition. Results at many energies all fit onto the same universal scaling curve.Comment: 5+ page

    Seismic Tremor Reveals Spatial Organization and Temporal Changes of Subglacial Water System

    Get PDF
    ©2019. American Geophysical Union. All Rights Reserved.Subglacial water flow impacts glacier dynamics and shapes the subglacial environment. However, due to the challenges of observing glacier beds, the spatial organization of subglacial water systems and the time scales of conduit evolution and migration are largely unknown. To address these questions, we analyze 1.5‐ to 10‐Hz seismic tremor that we associate with subglacial water flow, that is, glaciohydraulic tremor, at Taku Glacier, Alaska, throughout the 2016 melt season. We use frequency‐dependent polarization analysis to estimate glaciohydraulic tremor propagation direction (related to the subglacial conduit location) and a degree day melt model to monitor variations in melt‐water input. We suggest that conduit formation requires sustained water input and that multiconduit flow paths can be distinguished from single‐conduit flow paths. Theoretical analysis supports our seismic interpretations that subglacial discharge likely flows through a single‐conduit in regions of steep hydraulic potential gradients but may be distributed among multiple conduits in regions with shallower potential gradients. Seismic tremor in regions with multiple conduits evolves through abrupt jumps between stable configurations that last 3–7 days, while tremor produced by single‐conduit flow remains more stationary. We also find that polarized glaciohydraulic tremor wave types are potentially linked to the distance from source to station and that multiple peak frequencies propagate from a similar direction. Tremor appears undetectable at distances beyond 2–6 km from the source. This new understanding of the spatial organization and temporal development of subglacial conduits informs our understanding of dynamism within the subglacial hydrologic system.Raw seismic data described in this paper are available through the Incorporated Research Institutions for Seismology Data Management Center (http://ds.iris.edu/mda/ZQ? timewindow=2015‐2016; Amundson et al., 2015). The raw weather data used in this paper can be found through the Arctic Data Center (https://doi.org/ 10.18739/A2H98ZC7V; Bartholomaus & Walter, 2018). Python code developed to carry out the analyses presented here is available at https://github.com/ voremargot/Seismic‐Tremor‐Reveals‐ Spatial‐Organization‐and‐Temporal‐ Changes‐of Subglacial‐Water‐System and https://github.com/ tbartholomaus/med_spec. This study was made possible with support from the University of Texas Institute for Geophysics and the University of Idaho. We thank Ginny Catania for the loan of weather stations. J. P. W.'s and J. M. A.'s contributions to this work were supported by the U.S. National Science Foundation (OPP‐1337548 and OPP‐ 1303895). T. C. B. thanks Dylan Mikesell for an early conversation, which inspired the analysis presented here.Ye

    Seismic Tremor Reveals Spatial Organization and Temporal Changes of Subglacial Water System

    Get PDF
    ©2019. American Geophysical Union. All Rights Reserved.Subglacial water flow impacts glacier dynamics and shapes the subglacial environment. However, due to the challenges of observing glacier beds, the spatial organization of subglacial water systems and the time scales of conduit evolution and migration are largely unknown. To address these questions, we analyze 1.5‐ to 10‐Hz seismic tremor that we associate with subglacial water flow, that is, glaciohydraulic tremor, at Taku Glacier, Alaska, throughout the 2016 melt season. We use frequency‐dependent polarization analysis to estimate glaciohydraulic tremor propagation direction (related to the subglacial conduit location) and a degree day melt model to monitor variations in melt‐water input. We suggest that conduit formation requires sustained water input and that multiconduit flow paths can be distinguished from single‐conduit flow paths. Theoretical analysis supports our seismic interpretations that subglacial discharge likely flows through a single‐conduit in regions of steep hydraulic potential gradients but may be distributed among multiple conduits in regions with shallower potential gradients. Seismic tremor in regions with multiple conduits evolves through abrupt jumps between stable configurations that last 3–7 days, while tremor produced by single‐conduit flow remains more stationary. We also find that polarized glaciohydraulic tremor wave types are potentially linked to the distance from source to station and that multiple peak frequencies propagate from a similar direction. Tremor appears undetectable at distances beyond 2–6 km from the source. This new understanding of the spatial organization and temporal development of subglacial conduits informs our understanding of dynamism within the subglacial hydrologic system.Raw seismic data described in this paper are available through the Incorporated Research Institutions for Seismology Data Management Center (http://ds.iris.edu/mda/ZQ? timewindow=2015‐2016; Amundson et al., 2015). The raw weather data used in this paper can be found through the Arctic Data Center (https://doi.org/ 10.18739/A2H98ZC7V; Bartholomaus & Walter, 2018). Python code developed to carry out the analyses presented here is available at https://github.com/ voremargot/Seismic‐Tremor‐Reveals‐ Spatial‐Organization‐and‐Temporal‐ Changes‐of Subglacial‐Water‐System and https://github.com/ tbartholomaus/med_spec. This study was made possible with support from the University of Texas Institute for Geophysics and the University of Idaho. We thank Ginny Catania for the loan of weather stations. J. P. W.'s and J. M. A.'s contributions to this work were supported by the U.S. National Science Foundation (OPP‐1337548 and OPP‐ 1303895). T. C. B. thanks Dylan Mikesell for an early conversation, which inspired the analysis presented here.Ye

    A photometrically and spectroscopically confirmed population of passive spiral galaxies

    Get PDF
    We have identified a population of passive spiral galaxies from photometry and integral field spectroscopy. We selected z < 0.035 spiral galaxies that have WISE colours consistent with little mid-infrared emission from warm dust. Matched aperture photometry of 51 spiral galaxies in ultraviolet, optical and mid-infrared show these galaxies have colours consistent with passive galaxies. Six galaxies form a spectroscopic pilot study and were observed using the Wide-Field Spectrograph to check for signs of nebular emission from star formation. We see no evidence of substantial nebular emission found in previous red spiral samples. These six galaxies possess absorption-line spectra with 4000 Å breaks consistent with an average luminosity-weighted age of 2.3 Gyr. Our photometric and integral field spectroscopic observations confirm the existence of a population of local passive spiral galaxies, implying that transformation into early-type morphologies is not required for the quenching of star formation

    Mapping isoprene emissions over North America using formaldehyde column observations from space

    Get PDF
    We present a methodology for deriving emissions of volatile organic compounds (VOC) using space-based column observations of formaldehyde (HCHO) and apply it to data from the Global Ozone Monitoring Experiment (GOME) satellite instrument over North America during July 1996. The HCHO column is related to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. Isoprene is the dominant HCHO precursor over North America in summer, and its lifetime (≃1 hour) is sufficiently short that the smearing can be neglected. We use the Goddard Earth Observing System global 3-D model of tropospheric chemistry (GEOS-CHEM) to derive the relationship between isoprene emissions and HCHO columns over North America and use these relationships to convert the GOME HCHO columns to isoprene emissions. We also use the GEOS-CHEM model as an intermediary to validate the GOME HCHO column measurements by comparison with in situ observations. The GEOS-CHEM model including the Global Emissions Inventory Activity (GEIA) isoprene emission inventory provides a good simulation of both the GOME data (r2 = 0.69, n = 756, bias = +11%) and the in situ summertime HCHO measurements over North America (r2 = 0.47, n = 10, bias = −3%). The GOME observations show high values over regions of known high isoprene emissions and a day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U.S. EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements than either GEIA or BEIS2 (r2 = 0.71, n = 10, bias = −10%)

    Spatio-selection in Expanding Bacterial Colonies

    Full text link
    Segregation of populations is a key question in evolution theory. One important aspect is the relation between spatial organization and the population's composition. Here we study a specific example -- sectors in expanding bacterial colonies. Such sectors are spatially segregated sub-populations of mutants. The sectors can be seen both in disk-shaped colonies and in branching colonies. We study the sectors using two models we have used in the past to study bacterial colonies -- a continuous reaction-diffusion model with non-linear diffusion and a discrete ``Communicating Walkers'' model. We find that in expanding colonies, and especially in branching colonies, segregation processes are more likely than in a spatially static population. One such process is the establishment of stable sub- population having neutral mutation. Another example is the maintenance of wild-type population along side with sub-population of advantageous mutants. Understanding such processes in bacterial colonies is an important subject by itself, as well as a model system for similar processes in other spreading populations
    corecore