2,033 research outputs found

    Enhanced and directional single photon emission in hyperbolic metamaterials

    Full text link
    We propose an approach to enhance and direct the spontaneous emission from isolated emitters embedded inside hyperbolic metamaterials into single photon beams. The approach rests on collective plasmonic Bloch modes of hyperbolic metamaterials which propagate in highly directional beams called quantum resonance cones. We propose a pumping scheme using the transparency window of the hyperbolic metamaterial that occurs near the topological transition. Finally, we address the challenge of outcoupling these broadband resonance cones into vacuum using a dielectric bullseye grating. We give a detailed analysis of quenching and design the metamaterial to have a huge Purcell factor in a broad bandwidth inspite of the losses in the metal. Our work should help motivate experiments in the development of single photon sources for broadband emitters such as nitrogen vacancy centers in diamond.Comment: 29 pages, 9 figure

    Broadband super-Planckian thermal emission from hyperbolic metamaterials

    Full text link
    We develop the fluctuational electrodynamics of metamaterials with hyperbolic dispersion and show the existence of broadband thermal emission beyond the black body limit in the near field. This arises due to the thermal excitation of unique bulk metamaterial modes, which do not occur in conventional media. We consider a practical realization of the hyperbolic metamaterial and estimate that the effect will be observable using the characteristic dispersion (topological transitions) of the metamaterial states. Our work paves the way for engineering the near-field thermal emission using metamaterials
    • …
    corecore