62,662 research outputs found
Daze fasteners
A daze fastener system for connecting two or more structural elements wherein the structural elements and fastener parts have substantially different coefficient of thermal expansion physical property characteristics is employed in this invention. By providing frusto-conical abutting surfaces between the structural elements and fastener parts any differences in thermal expansion/contraction between the parts is translated to sliding motion and avoids deleterious thermal stresses in the connection. An essential feature for isotropic homogeneous material connections is that at least two sets of mating surfaces are required wherein each set of mating surfaces have line element extensions that pass through a common point
Structural efficiency studies of corrugated compression panels with curved caps and beaded webs
Curved cross-sectional elements are employed in structural concepts for minimum-mass compression panels. Corrugated panel concepts with curved caps and beaded webs are optimized by using a nonlinear mathematical programming procedure and a rigorous buckling analysis. These panel geometries are shown to have superior structural efficiencies compared with known concepts published in the literature. Fabrication of these efficient corrugation concepts became possible by advances made in the art of superplastically forming of metals. Results of the mass optimization studies of the concepts are presented as structural efficiency charts for axial compression
A design assessment of multiwall, metallic stand-off, and RSI reusable thermal protection systems including space shuttle application
The design and assessment of reusable surface insulation (RSI), metallic stand off and multiwall thermal protection systems (TPS) is discussed. Multiwall TPS is described in some detail, and analyses useful for design of multiwall are included. Results indicate that multiwall has the potential to satisfy the TPS design goals better than the other systems. The total mass of the stand-off TPS and of the metallic systems require less primary structure mass than the RSI system, since the nonbuckling skin criteria required for RSI may be removed. Continued development of multiwall TPS is required to verify its potential and to provide the necessary data base for design
Computer program to determine pressure distributions and forces on blunt bodies of revolution
Program was written to include integration of surface pressure in order to obtain axial-force, normal-force, and pitching-moment coefficients. Program was written in CDC FORTRAN for the CDC-6600 computer system
The interpretive approach to religious education : challenging Thompson's interpretation
In a recent book chapter, Matthew Thompson makes some criticisms of my work, including the interpretive approach to religious education and the research and activity of Warwick Religions and Education Research Unit. Against the background of a discussion of religious education in the public sphere, my response challenges Thompson’s account, commenting on his own position in relation to dialogical approaches to religious education. The article rehearses my long held view that the ideal form of religious education in fully state funded schools of a liberal democracy should be ‘secular’ but not ‘secularist’; there should be no implication of an axiomatic secular humanist interpretation of religions
Chiral-logarithmic Corrections to the S and T Parameters in Higgsless Models
Recently, Higgsless models have proven to be viable alternatives to the
Standard Model (SM) and supersymmetric models in describing the breaking of the
electroweak symmetry. Whether extra-dimensional in nature or their
deconstructed counterparts, the physical spectrum of these models typically
consists of ``towers'' of massive vector gauge bosons which carry the same
quantum numbers as the SM W and Z. In this paper, we calculate the one-loop,
chiral-logarithmic corrections to the S and T parameters from the lightest
(i.e. SM) and the next-to-lightest gauge bosons using a novel application of
the Pinch Technique. We perform our calculation using generic Feynman rules
with generic couplings such that our results can be applied to various models.
To demonstrate how to use our results, we calculate the leading
chiral-logarithmic corrections to the S and T parameters in the deconstructed
three site Higgsless model. As we point out, however, our results are not
exclusive to Higgsless models and may, in fact, be used to calculate the
one-loop corrections from additional gauge bosons in models with fundamental
(or composite) Higgs bosons.Comment: 45 pages, 15 figures, added references, analysis of three site model
expanded to include delocalized fermion
High-tip-speed, low-loading transonic fan stage. Part 3: Final report
Tests were conducted on a high-tip-speed, low-loading transonic fan stage to determine the performance and inlet flow distortion tolerance of the design. The fan was designed for high efficiency at a moderate pressure ratio by designing the hub section to operate at minimum loss when the tip operates with an oblique shock. The design objective was an efficiency of 86 percent at a pressure ratio of 1.5, a specific flow (flow per unit annulus area) of 42 lb/sec-sq. ft (205.1 kgm/sec-m sq), and a tip speed of 1600 ft/sec (488.6 m/sec). During testing, a peak efficiency of 84 percent was achieved at design speed and design specific flow. At the design speed and pressure ratio, the flow was 4 percent greater than design, efficiency was 81 percent, and a stall margin of 24 percent was obtained. The stall line was improved with hub radial distortion but was reduced when the stage was tested with tip radial and circumferential flow distortions. Blade-to-blade values of static pressures were measured over the rotor blade tips
Hightip-speed, low-loading transonic fan stage. Part 2: Data compilation
Tests were conducted on a high-tip-speed low-loading transonic fan stage to determine the performance and inlet flow distortion tolerance of the design. Test data were recorded for overall and blade element performance with both uniform and distorted inlet flows. A tabular summary of the data and a representative selection of the computer data reduction sheets are presented
Curved cap corrugated sheet
The report describes a structure for a strong, lightweight corrugated sheet. The sheet is planar or curved and includes a plurality of corrugation segments, each segment being comprised of a generally U-shaped corrugation with a part-cylindrical crown and cap strip, and straight side walls and with secondary corrugations oriented at right angles to said side walls. The cap strip is bonded to the crown and the longitudinal edge of said cap strip extends beyond edge at the intersection between said crown and said side walls. The high strength relative to weight of the structure makes it desirable for use in aircraft or spacecraft
Noncooperatively Optimized Tolerance: Decentralized Strategic Optimization in Complex Systems
We introduce noncooperatively optimized tolerance (NOT), a generalization of
highly optimized tolerance (HOT) that involves strategic (game theoretic)
interactions between parties in a complex system. We illustrate our model in
the forest fire (percolation) framework. As the number of players increases,
our model retains features of HOT, such as robustness, high yield combined with
high density, and self-dissimilar landscapes, but also develops features of
self-organized criticality (SOC) when the number of players is large enough.
For example, the forest landscape becomes increasingly homogeneous and
protection from adverse events (lightning strikes) becomes less closely
correlated with the spatial distribution of these events. While HOT is a
special case of our model, the resemblance to SOC is only partial; for example,
the distribution of cascades, while becoming increasingly heavy-tailed as the
number of players increases, also deviates more significantly from a power law
in this regime. Surprisingly, the system retains considerable robustness even
as it becomes fractured, due in part to emergent cooperation between
neighboring players. At the same time, increasing homogeneity promotes
resilience against changes in the lightning distribution, giving rise to
intermediate regimes where the system is robust to a particular distribution of
adverse events, yet not very fragile to changes
- …