4 research outputs found

    Products of Random Matrices

    Get PDF
    We derive analytic expressions for infinite products of random 2x2 matrices. The determinant of the target matrix is log-normally distributed, whereas the remainder is a surprisingly complicated function of a parameter characterizing the norm of the matrix and a parameter characterizing its skewness. The distribution may have importance as an uncommitted prior in statistical image analysis.Comment: 9 pages, 1 figur

    Multiplying unitary random matrices - universality and spectral properties

    Full text link
    In this paper we calculate, in the large N limit, the eigenvalue density of an infinite product of random unitary matrices, each of them generated by a random hermitian matrix. This is equivalent to solving unitary diffusion generated by a hamiltonian random in time. We find that the result is universal and depends only on the second moment of the generator of the stochastic evolution. We find indications of critical behavior (eigenvalue spacing scaling like 1/N3/41/N^{3/4}) close to θ=π\theta=\pi for a specific critical evolution time tct_c.Comment: 12 pages, 2 figure

    Brownian Warps: A least committed prior for non-rigid registration

    No full text
    Non-rigid registration requires a smoothness or regularization term for making the warp field regular. Standard models in use here include b-splines and thin plate splines. In this paper, we suggest a regularizer which is based on first principles, is symmetric with respect to source and destination, and fulfills a natural semi-group property for warps. We construct the regularizer from a distribution on warps. This distribution arises as the limiting distribution for concatenations of warps just as the Gaussian distribution arises as the limiting distribution for the addition of numbers. Through an Euler-Lagrange formulation, algorithms for obtaining maximum likelihood registrations are constructed. The technique is demonstrated using 2D examples
    corecore