8 research outputs found
Animal models and vaccines for SARS-CoV infection
We summarize findings of SARS-CoV infections in several animal models each of which support viral replication in lungs accompanied by histopathological changes and/or clinical signs of illness to varying degrees. New findings are reported on SARS-CoV replication and associated pathology in two additional strains (C57BL/6 and 129S6) of aged mice. We also provide new comparative data on viral replication and associated pathology following infection of golden Syrian hamsters with various SARS-CoV strains and report the levels of neutralizing antibody titers following these infections and the cross-protective efficacy of infection with these strains in protecting against heterologous challenge. Finally, we summarize findings of a variety of vaccine approaches and discuss the available in vitro and in vivo data addressing the potential for disease enhancement following re-infection in animals previously vaccinated against or infected with SARS-CoV
A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in Golden Syrian hamsters
The immunogenicity and protective efficacy of a live attenuated vaccine consisting of a recombinant severe acute respiratory syndrome (SARS) coronavirus lacking the E gene (rSARS-CoV-ÎE) were studied using hamsters. Hamsters immunized with rSARS-CoV-ÎE developed high serum-neutralizing antibody titers and were protected from replication of homologous (SARS-CoV Urbani) and heterologous (GD03) SARS-CoV in the upper and lower respiratory tract. rSARS-CoV-ÎE-immunized hamsters remained active following wild-type virus challenge, while mock-immunized hamsters displayed decreased activity. Despite being attenuated in replication in the respiratory tract, rSARS-CoV-ÎE is an immunogenic and efficacious vaccine in hamsters.This research was supported in part by the Intramural Research
Program of the NIH, NIAID; by NIH AID AI059136; and by the
European Community (projects DISSECT SP22-CT-2004-511060 and
Rivigene SSPE-CT-2005-022639)
A Live Attenuated Severe Acute Respiratory Syndrome Coronavirus Is Immunogenic and Efficacious in Golden Syrian Hamstersâż
The immunogenicity and protective efficacy of a live attenuated vaccine consisting of a recombinant severe acute respiratory syndrome (SARS) coronavirus lacking the E gene (rSARS-CoV-ÎE) were studied using hamsters. Hamsters immunized with rSARS-CoV-ÎE developed high serum-neutralizing antibody titers and were protected from replication of homologous (SARS-CoV Urbani) and heterologous (GD03) SARS-CoV in the upper and lower respiratory tract. rSARS-CoV-ÎE-immunized hamsters remained active following wild-type virus challenge, while mock-immunized hamsters displayed decreased activity. Despite being attenuated in replication in the respiratory tract, rSARS-CoV-ÎE is an immunogenic and efficacious vaccine in hamsters
Animal models and vaccines for SARS-CoV infection
We summarize findings of SARS-CoV infections in several animal models each of which support viral replication in lungs accompanied by histopathological changes and/or clinical signs of illness to varying degrees. New findings are reported on SARS-CoV replication and associated pathology in two additional strains (C57BL/6 and 129S6) of aged mice. We also provide new comparative data on viral replication and associated pathology following infection of golden Syrian hamsters with various SARS-CoV strains and report the levels of neutralizing antibody titers following these infections and the cross-protective efficacy of infection with these strains in protecting against heterologous challenge. Finally, we summarize findings of a variety of vaccine approaches and discuss the available in vitro and in vivo data addressing the potential for disease enhancement following re-infection in animals previously vaccinated against or infected with SARS-CoV
Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies
Flare frequency distributions represent a key approach to addressing one of
the largest problems in solar and stellar physics: determining the mechanism
that counter-intuitively heats coronae to temperatures that are orders of
magnitude hotter than the corresponding photospheres. It is widely accepted
that the magnetic field is responsible for the heating, but there are two
competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To
date, neither can be directly observed. Nanoflares are, by definition,
extremely small, but their aggregate energy release could represent a
substantial heating mechanism, presuming they are sufficiently abundant. One
way to test this presumption is via the flare frequency distribution, which
describes how often flares of various energies occur. If the slope of the power
law fitting the flare frequency distribution is above a critical threshold,
as established in prior literature, then there should be a
sufficient abundance of nanoflares to explain coronal heating. We performed
600 case studies of solar flares, made possible by an unprecedented number
of data analysts via three semesters of an undergraduate physics laboratory
course. This allowed us to include two crucial, but nontrivial, analysis
methods: pre-flare baseline subtraction and computation of the flare energy,
which requires determining flare start and stop times. We aggregated the
results of these analyses into a statistical study to determine that . This is below the critical threshold, suggesting that Alfv\'en
waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The
Astrophysical Journal on 2023-05-09, volume 948, page 7