92 research outputs found

    Cholesterol granuloma presenting as a mass obstructing the external ear canal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cholesterol granuloma (CG) may involve the middle ear, the mastoid bone and the petrous apex. However, CG presenting as a mass obstructing the external ear canal (EEC) is relatively rare and it can be a diagnostic challenge.</p> <p>Case Presentation</p> <p>We report a case of a CG occupying the mastoid antrum and presenting as a mass into the EEC. Temporal bone computerized tomography showed a soft tissue mass which eroded the posterior-superior bony wall of the EEC. On magnetic resonance imaging, the mass revealed a high signal on both T1 and T2-weighted images. The CG was removed by a mastoidectomy procedure and the histopathologic report confirmed the diagnosis of CG. A type III tympanoplasty was performed.</p> <p>Conclusions</p> <p>The postoperative course was uneventful.</p

    Variable expressivity of FGF3 mutations associated with deafness and LAMM syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recessive mutations of fibroblast growth factor 3 (FGF3) can cause LAMM syndrome (OMIM 610706), characterized by fully penetrant complete labyrinthine aplasia, microtia and microdontia.</p> <p>Methods</p> <p>We performed a prospective molecular genetic and clinical study of families segregating hearing loss linked to <it>FGF3 </it>mutations. Ten affected individuals from three large Pakistani families segregating <it>FGF3 </it>mutations were imaged with CT, MRI, or both to detect inner ear abnormalities. We also modeled the three dimensional structure of FGF3 to better understand the structural consequences of the three missense mutations.</p> <p>Results</p> <p>Two families segregated reported mutations (p.R104X and p.R95W) and one family segregated a novel mutation (p.R132GfsX26) of <it>FGF3</it>. All individuals homozygous for p.R104X or p.R132GfsX26 had fully penetrant features of LAMM syndrome. However, recessive p.R95W mutations were associated with nearly normal looking auricles and variable inner ear structural phenotypes, similar to that reported for a Somali family also segregating p.R95W. This suggests that the mild phenotype is not entirely due to genetic background. Molecular modeling result suggests a less drastic effect of p.R95W on FGF3 function compared with known missense mutations detected in fully penetrant LAMM syndrome. Since we detected significant intrafamilial variability of the inner ear structural phenotype in the family segregating p.R95W, we also sequenced <it>FGF10 </it>as a likely candidate for a modifier. However, we did not find any sequence variation, pointing out that a larger sample size will be needed to map and identify a modifier. We also observed a mild to moderate bilateral conductive hearing loss in three carriers of p.R95W, suggesting either a semi-dominant effect of this mutant allele of <it>FGF3</it>, otitis media, or a consequence of genetic background in these three family members.</p> <p>Conclusions</p> <p>We noted a less prominent dental and external ear phenotype in association with the homozygous p.R95W. Therefore, we conclude that the manifestations of recessive <it>FGF3 </it>mutations range from fully penetrant LAMM syndrome to deafness with residual inner ear structures and, by extension, with minimal syndromic features, an observation with implications for cochlear implantation candidacy.</p
    • …
    corecore