182 research outputs found
RF bifurcation of a Josephson junction: microwave embedding circuit requirements
A Josephson tunnel junction which is RF-driven near a dynamical bifurcation
point can amplify quantum signals. The bifurcation point will exist robustly
only if the electrodynamic environment of the junction meets certain criteria.
In this article we develop a general formalism for dealing with the non-linear
dynamics of Josephson junction embedded in an arbitrary microwave circuit. We
find sufficient conditions for the existence of the bifurcation regime: a) the
embedding impedance of the junction need to present a resonance at a particular
frequency , with the quality factor of the resonance and the
participation ratio of the junction satisfying , b) the drive
frequency should be low frequency detuned away from by more than
.Comment: Submitted to Phys. Rev. B, 12 pages, 6 figure
High resolution measurements of the switching current in a Josephson tunnel junction: Thermal activation and macroscopic quantum tunneling
We have developed a scheme for a high resolution measurement of the switching
current distribution of a current biased Josephson tunnel junction using a
timing technique. The measurement setup is implemented such that the digital
control and read-out electronics are optically decoupled from the analog bias
electronics attached to the sample. We have successfully used this technique to
measure the thermal activation and the macroscopic quantum tunneling of the
phase in a small Josephson tunnel junction with a high experimental resolution.
This technique may be employed to characterize current-biased Josephson tunnel
junctions for applications in quantum information processing.Comment: 10 pages, 8 figures, 1 tabl
Dilation of the Giant Vortex State in a Mesoscopic Superconducting Loop
We have experimentally investigated the magnetisation of a mesoscopic
aluminum loop at temperatures well below the superconducting transition
temperature . The flux quantisation of the superconducting loop was
investigated with a -Hall magnetometer in magnetic field intensities
between . The magnetic field intensity periodicity observed in
the magnetization measurements is expected to take integer values of the
superconducting flux quanta . A closer inspection of the
periodicity, however, reveal a sub flux quantum shift. This fine structure we
interpret as a consequence of a so called giant vortex state nucleating towards
either the inner or the outer side of the loop. These findings are in agreement
with recent theoretical reports.Comment: 12 pages, 5 figures. Accepted for publication in Phys. Rev.
Thermal effects on atomic friction
We model friction acting on the tip of an atomic force microscope as it is
dragged across a surface at non-zero temperatures. We find that stick-slip
motion occurs and that the average frictional force follows ,
where is the tip velocity. This compares well to recent experimental work
(Gnecco et al, PRL 84, 1172), permitting the quantitative extraction of all
microscopic parameters. We calculate the scaled form of the average frictional
force's dependence on both temperature and tip speed as well as the form of the
friction-force distribution function.Comment: Accepted for publication, Physical Review Letter
Crossover from thermal hopping to quantum tunneling in Mn_{12}Ac
The crossover from thermal hopping to quantum tunneling is studied. We show
that the decay rate with dissipation can accurately be determined near
the crossover temperature. Besides considering the Wentzel-Kramers-Brillouin
(WKB) exponent, we also calculate contribution of the fluctuation modes around
the saddle point and give an extended account of a previous study of crossover
region. We deal with two dangerous fluctuation modes whose contribution can't
be calculated by the steepest descent method and show that higher order
couplings between the two dangerous modes need to be taken into considerations.
At last the crossover from thermal hopping to quantum tunneling in the
molecular magnet Mn_{12}Ac is studied.Comment: 10 pages, 3 figure
Metastability in Josephson transmission lines
Thermal activation and macroscopic quantum tunneling in current-biased
discrete Josephson transmission lines are studied theoretically. The degrees of
freedom under consideration are the phases across the junctions which are
coupled to each other via the inductances of the system. The resistively
shunted junctions that we investigate constitute a system of N interacting
degrees of freedom with an overdamped dynamics. We calculate the decay rate
within exponential accuracy as a function of temperature and current. Slightly
below the critical current, the decay from the metastable state occurs via a
unique ("rigid") saddlepoint solution of the Euclidean action describing the
simultaneous decay of the phases in all the junctions. When the current is
reduced, a crossover to a regime takes place, where the decay occurs via an
"elastic" saddlepoint solution and the phases across the junctions leave the
metastable state one after another. This leads to an increased decay rate
compared with the rigid case both in the thermal and the quantum regime. The
rigid-to-elastic crossover can be sharp or smooth analogous to first- or
second- order phase transitions, respectively. The various regimes are
summarized in a current-temperature decay diagram.Comment: 11 pages, RevTeX, 3 PS-figures, revised versio
Evaluating motor cortical oscillations and age-related change in autism spectrum disorder
Autism spectrum disorder (ASD) is primarily characterized by impairments in social communication and the appearance of repetitive behaviors with restricted interests. Increasingly, evidence also points to a general deficit of motor tone and coordination in children and adults with ASD; yet the neural basis of motor functional impairment in ASD remains poorly characterized. In this study we used magnetoencephalography (MEG) to (1) assess potential group differences between typically developing (TD) and ASD participants in motor cortical oscillatory activity observed on a simple button-press task and (2) to do so over a sufficiently broad age-range so as to capture age-dependent changes associated with development. Event-related desynchronization was evaluated in Mu (8-13 Hz) and Beta (15-30 Hz) frequency bands (Mu-ERD, Beta-ERD). In addition, post-movement Beta rebound (PMBR), and movement-related gamma (60-90 Hz) synchrony (MRGS) were also assessed in a cohort of 123 participants (63 typically developing (TD) and 59 with ASD) ranging in age from 8 to 24.9 years. We observed significant age-dependent linear trends in Beta-ERD and MRGS power with age for both TD and ASD groups; which did not differ significantly between groups. However, for PMBR, in addition to a significant effect of age, we also observed a significant reduction in PMBR power in the ASD group (p 13.2 years (p < 0.001) and this group difference was not observed when assessing PMBR activity for the younger PMBR groups (ages 8-13.2 years; p = 0.48). Moreover, for the older ASD cohort, hierarchical regression showed a significant relationship between PMBR activity and clinical scores of ASD severity (SRS-T scores), after regressing out the effect of age (p < 0.05). Our results show substantial age-dependent changes in motor cortical oscillations (Beta-ERD and MRGS) occur for both TD and ASD children and diverge only for PMBR, and most significantly for older adolescents and adults with ASD. While the functional significance of PMBR and reduced PMBR signaling remains to be fully elucidated, these results underscore the importance of considering age as a factor when assessing motor cortical oscillations and group differences in children with ASD
Pioneer Anomaly and the Kuiper Belt mass distribution
Pioneer 10 and 11 were the first probes sent to study the outer planets of
the Solar System and Pioneer 10 was the first spacecraft to leave the Solar
System. Besides their already epic journeys, Pioneer 10 and 11 spacecraft were
subjected to an unaccounted effect interpreted as a constant acceleration
toward the Sun, the so-called Pioneer anomaly. One of the possibilities put
forward for explaining the Pioneer anomaly is the gravitational acceleration of
the Kuiper Belt. In this work we examine this hypothesis for various models for
the Kuiper Belt mass distribution. We find that the gravitational effect due to
the Kuiper Belt cannot account for the Pioneer anomaly. Furthermore, we have
also studied the hypothesis that drag forces can explain the the Pioneer
anomaly; however we conclude that the density required for producing the
Pioneer anomaly is many orders of magnitude greater than those of
interplanetary and interstellar dust. Our conclusions suggest that only through
a mission, the Pioneer anomaly can be confirmed and further investigated. If a
mission with these aims is ever sent to space, it turns out, on account of our
results, that it will be also a quite interesting probe to study the mass
distribution of the Kuiper Belt.Comment: Plain latex; 17 pages, 12 figures. Version to appear in Classical and
Quantum Gravity (2006
- …