399 research outputs found
Algebraic and Topological Indices of Molecular Pathway Networks in Human Cancers
Protein-protein interaction networks associated with diseases have gained
prominence as an area of research. We investigate algebraic and topological
indices for protein-protein interaction networks of 11 human cancers derived
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We find a
strong correlation between relative automorphism group sizes and topological
network complexities on the one hand and five year survival probabilities on
the other hand. Moreover, we identify several protein families (e.g. PIK, ITG,
AKT families) that are repeated motifs in many of the cancer pathways.
Interestingly, these sources of symmetry are often central rather than
peripheral. Our results can aide in identification of promising targets for
anti-cancer drugs. Beyond that, we provide a unifying framework to study
protein-protein interaction networks of families of related diseases (e.g.
neurodegenerative diseases, viral diseases, substance abuse disorders).Comment: 15 pages, 4 figure
The Bioelectric Circuitry of the Cell
This chapter presents an overview of electric conduction in living cells when viewed as a composition of bioelectric circuits. We review the cell's components that are known to exhibit electric conduction properties and represent them as parts of a complex circuitry. In particular, we discuss conductivity of the membrane, ion channels, actin filaments, DNA, and microtubules, each of which play important roles in the biological functioning of the cell. A new picture emerges where electrical conduction within the cell is taking place in an integrated fashion and may explain synchronization and orchestration of the cell dynamics
Are there optical communication channels in the brain?
Despite great progress in neuroscience, there are still fundamental
unanswered questions about the brain, including the origin of subjective
experience and consciousness. Some answers might rely on new physical
mechanisms. Given that biophotons have been discovered in the brain, it is
interesting to explore if neurons use photonic communication in addition to the
well-studied electro-chemical signals. Such photonic communication in the brain
would require waveguides. Here we review recent work [S. Kumar, K. Boone, J.
Tuszynski, P. Barclay, and C. Simon, Scientific Reports 6, 36508 (2016)]
suggesting that myelinated axons could serve as photonic waveguides. The light
transmission in the myelinated axon was modeled, taking into account its
realistic imperfections, and experiments were proposed both in-vivo and
in-vitro to test this hypothesis. Potential implications for quantum biology
are discussed.Comment: 13 pages, 5 figures, review of arXiv:1607.02969 for Frontiers in
Bioscience, updated figures, new references on existence of opsins in the
brain and experimental effects of light on neuron
- …