138 research outputs found

    State of the Question

    Get PDF

    Two loop effective kaehler potential of (non-)renormalizable supersymmetric models

    Full text link
    We perform a supergraph computation of the effective Kaehler potential at one and two loops for general four dimensional N=1 supersymmetric theories described by arbitrary Kaehler potential, superpotential and gauge kinetic function. We only insist on gauge invariance of the Kaehler potential and the superpotential as we heavily rely on its consequences in the quantum theory. However, we do not require gauge invariance for the gauge kinetic functions, so that our results can also be applied to anomalous theories that involve the Green-Schwarz mechanism. We illustrate our two loop results by considering a few simple models: the (non-)renormalizable Wess-Zumino model and Super Quantum Electrodynamics.Comment: 1+26 pages, LaTeX, 6 figures; a missing diagram added and typos correcte

    RMT: R-matrix with time-dependence. Solving the semi-relativistic, time-dependent Schrödinger equation for general, multi-electron atoms and molecules in intense, ultrashort, arbitrarily polarized laser pulses

    Get PDF
    RMT is a program which solves the time-dependent Schrödinger equation for general, multielectron atoms, ions and molecules interacting with laser light. As such it can be used to model ionization (single-photon, multiphoton and strong-field), recollision (high-harmonic generation, strong-field rescattering) and, more generally, absorption or scattering processes with a full account of the multielectron correlation effects in a time-dependent manner. Calculations can be performed for targets interacting with ultrashort, intense laser pulses of long wavelength and arbitrary polarization. Calculations for atoms can optionally include the Breit–Pauli correction terms for the description of relativistic (in particular, spin–orbit) effects

    Supersymmetric Regularization, Two-Loop QCD Amplitudes and Coupling Shifts

    Get PDF
    We present a definition of the four-dimensional helicity (FDH) regularization scheme valid for two or more loops. This scheme was previously defined and utilized at one loop. It amounts to a variation on the standard 't Hooft-Veltman scheme and is designed to be compatible with the use of helicity states for "observed" particles. It is similar to dimensional reduction in that it maintains an equal number of bosonic and fermionic states, as required for preserving supersymmetry. Supersymmetry Ward identities relate different helicity amplitudes in supersymmetric theories. As a check that the FDH scheme preserves supersymmetry, at least through two loops, we explicitly verify a number of these identities for gluon-gluon scattering (gg to gg) in supersymmetric QCD. These results also cross-check recent non-trivial two-loop calculations in ordinary QCD. Finally, we compute the two-loop shift between the FDH coupling and the standard MS-bar coupling, alpha_s. The FDH shift is identical to the one for dimensional reduction. The two-loop coupling shifts are then used to obtain the three-loop QCD beta function in the FDH and dimensional reduction schemes.Comment: 44 pages, minor corrections and clarifications include

    Kinetics of plasma cell‐free DNA and creatine kinase in a canine model of tissue injury

    Get PDF
    Background: Cell‐free DNA (cfDNA) comprises short, double‐stranded circulating DNA sequences released from damaged cells. In people, cfDNA concentrations correlate well with disease severity and tissue damage. No reports are available regarding cfDNA kinetics in dogs. Objectives/Hypothesis: Cell‐free DNA will have a short biological half‐life and would be able to stratify mild, moderate, and severe tissue injury. Our study aims were to determine the kinetics and biological half‐life of cfDNA and to contrast them with those of creatine kinase (CK). Animals: Three groups of 10 dogs undergoing open ovariohysterectomy, surgery for cranial cruciate ligament rupture (CCLR), or hemilaminectomy. Methods: Plasma for cfDNA and CK analysis was collected at admission, at induction of anesthesia, postsurgery (time 0) and at 6, 12, 24, 36, 48, 60, and 72 hours after surgery. Results: The biological half‐life of plasma cfDNA and CK were 5.64 hours (95% confidence interval [CI 95], 4.36–7.98 hours) and 28.7 hours (CI95, 25.3–33.3 hours), respectively. In the hemilaminectomy group, cfDNA concentrations differed significantly from admission at 6–12 hours after surgery. Creatine kinase activity differed among the surgical groups and reached a peak 6 hours after surgery. In the ovariohysterectomy and CCLR groups, plasma CK activity 72 hours after surgery did not differ from admission activity of the ovariohysterectomy group. In contrast, in the hemilaminectomy group, plasma CK activity after 72 hours did not return to the ovariohysterectomy group admission activity. Conclusions and Clinical Importance: Plasma CK activity has a longer biological half‐life than previously thought. In contrast to plasma CK activity, cfDNA has a short half‐life and could be a useful marker for peracute severe tissue injury

    On the Background Field Method Beyond One Loop: A manifestly covariant derivative expansion in super Yang-Mills theories

    Get PDF
    There are currently many string inspired conjectures about the structure of the low-energy effective action for super Yang-Mills theories which require explicit multi-loop calculations. In this paper, we develop a manifestly covariant derivative expansion of superspace heat kernels and present a scheme to evaluate multi-loop contributions to the effective action in the framework of the background field method. The crucial ingredient of the construction is a detailed analysis of the properties of the parallel displacement propagators associated with Yang-Mills supermultiples in N-extended superspace.Comment: 32 pages, latex, 7 EPS figures. v2: references, comments added, typos corrected, incorrect `skeleton' conjecture in sect. 3 replaced by a more careful treatment. v3: typos corrected, final version published in JHE

    Two-Loop g -> gg Splitting Amplitudes in QCD

    Full text link
    Splitting amplitudes are universal functions governing the collinear behavior of scattering amplitudes for massless particles. We compute the two-loop g -> gg splitting amplitudes in QCD, N=1, and N=4 super-Yang-Mills theories, which describe the limits of two-loop n-point amplitudes where two gluon momenta become parallel. They also represent an ingredient in a direct x-space computation of DGLAP evolution kernels at next-to-next-to-leading order. To obtain the splitting amplitudes, we use the unitarity sewing method. In contrast to the usual light-cone gauge treatment, our calculation does not rely on the principal-value or Mandelstam-Leibbrandt prescriptions, even though the loop integrals contain some of the denominators typically encountered in light-cone gauge. We reduce the integrals to a set of 13 master integrals using integration-by-parts and Lorentz invariance identities. The master integrals are computed with the aid of differential equations in the splitting momentum fraction z. The epsilon-poles of the splitting amplitudes are consistent with a formula due to Catani for the infrared singularities of two-loop scattering amplitudes. This consistency essentially provides an inductive proof of Catani's formula, as well as an ansatz for previously-unknown 1/epsilon pole terms having non-trivial color structure. Finite terms in the splitting amplitudes determine the collinear behavior of finite remainders in this formula.Comment: 100 pages, 33 figures. Added remarks about leading-transcendentality argument of hep-th/0404092, and additional explanation of cut-reconstruction uniquenes

    Nonanticommutative U(1) SYM theories: Renormalization, fixed points and infrared stability

    Full text link
    Renormalizable nonanticommutative SYM theories with chiral matter in the adjoint representation of the gauge group have been recently constructed in [arXiv:0901.3094]. In the present paper we focus on the U*(1) case with matter interacting through a cubic superpotential. For a single flavor, in a superspace setup and manifest background covariant approach we perform the complete one-loop renormalization and compute the beta-functions for all couplings appearing in the action. We then generalize the calculation to the case of SU(3) flavor matter with a cubic superpotential viewed as a nontrivial NAC generalization of the ordinary abelian N=4 SYM and its marginal deformations. We find that, as in the ordinary commutative case, the NAC N=4 theory is one-loop finite. We provide general arguments in support of all-loop finiteness. Instead, deforming the superpotential by marginal operators gives rise to beta-functions which are in general non-vanishing. We study the spectrum of fixed points and the RG flows. We find that nonanticommutativity always makes the fixed points unstable.Comment: 1+30 pages, 5 figure

    Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms

    Get PDF
    Accurate quantification of biodiversity is fundamental to understanding ecosystem function and for environmental assessment. Molecular methods using environmental DNA (eDNA) offer a non-invasive, rapid, and cost-effective alternative to traditional biodiversity assessments, which require high levels of expertise. While eDNA analyses are increasingly being utilized, there remains considerable uncertainty regarding the dynamics of multispecies eDNA, especially in variable systems such as rivers. Here, we utilize four sets of upland stream mesocosms, across an acid–base gradient, to assess the temporal and environmental degradation of multispecies eDNA. Sampling included water column and biofilm sampling over time with eDNA quantified using qPCR. Our findings show that the persistence of lotic multispecies eDNA, sampled from water and biofilm, decays to non-detectable levels within 2 days and that acidic environments accelerate the degradation process. Collectively, the results provide the basis for a predictive framework for the relationship between lotic eDNA degradation dynamics in spatio-temporally dynamic river ecosystems
    corecore