1,082 research outputs found
Limit Cycles in Four Dimensions
We present an example of a limit cycle, i.e., a recurrent flow-line of the
beta-function vector field, in a unitary four-dimensional gauge theory. We thus
prove that beta functions of four-dimensional gauge theories do not produce
gradient flows. The limit cycle is established in perturbation theory with a
three-loop calculation which we describe in detail.Comment: 12 pages, 1 figure. Significant revision of the interpretation of our
result. Improved description of three-loop calculatio
The GUT Scale and Superpartner Masses from Anomaly Mediated Supersymmetry Breaking
We consider models of anomaly-mediated supersymmetry breaking (AMSB) in which
the grand unification (GUT) scale is determined by the vacuum expectation value
of a chiral superfield. If the anomaly-mediated contributions to the potential
are balanced by gravitational-strength interactions, we find a
model-independent prediction for the GUT scale of order . The GUT threshold also affects superpartner masses, and can easily
give rise to realistic predictions if the GUT gauge group is asymptotically
free. We give an explicit example of a model with these features, in which the
doublet-triplet splitting problem is solved. The resulting superpartner
spectrum is very different from that of previously considered AMSB models, with
gaugino masses typically unifying at the GUT scale.Comment: 17 page
The Reach of the Fermilab Tevatron and CERN LHC for Gaugino Mediated SUSY Breaking Models
In supersymmetric models with gaugino mediated SUSY breaking (inoMSB), it is
assumed that SUSY breaking on a hidden brane is communicated to the visible
brane via gauge superfields which propagate in the bulk. This leads to GUT
models where the common gaugino mass is the only soft SUSY breaking
term to receive contributions at tree level. To obtain a viable phenomenology,
it is assumed that the gaugino mass is induced at some scale beyond the
GUT scale, and that additional renormalization group running takes place
between and as in a SUSY GUT. We assume an SU(5) SUSY GUT above
the GUT scale, and compute the SUSY particle spectrum expected in models with
inoMSB. We use the Monte Carlo program ISAJET to simulate signals within the
inoMSB model, and compute the SUSY reach including cuts and triggers approriate
to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the
Tevatron collider in the trilepton channel. %either with or without %identified
tau leptons. At the CERN LHC, values of (1160) GeV can be probed
with 10 (100) fb of integrated luminosity, corresponding to a reach in
terms of of 2150 (2500) GeV. The inoMSB model and mSUGRA can likely
only be differentiated at a linear collider with sufficient energy to
produce sleptons and charginos.Comment: 17 page revtex file with 9 PS figure
Sfermion masses in Nelson-Strassler type of models: SUSY standard models coupled with SCFTs
We study soft SUSY breaking parameters in the Nelson-Strassler type of
models: SUSY standard models coupled with SCFTs. In this type of models, soft
SUSY breaking parameters including sfermion masses can be suppressed around the
decoupling scale of SCFTs. We clarify the condition to derive exponential
suppression of sfermion masses within the framework of pure SCFTs. Such
behavior is favorable for degeneracy of sfermion masses. However, the realistic
sfermion masses are not quite degenerate due to the gauge couplings and the
gaugino masses in the SM sector. We show the sfermion mass spectrum obtained in
such models. The aspect of suppression for the soft SUSY breaking parameters is
also demonstrated in an explicit model. We also give a mechanism generating the
-term of the Electro-Weak scale by a singlet field coupled with the SCFT.Comment: 28 pages, 8 figures, LaTeX file; corrected typos and references adde
Combining Anomaly and Z' Mediation of Supersymmetry Breaking
We propose a scenario in which the supersymmetry breaking effect mediated by
an additional U(1)' is comparable with that of anomaly mediation. We argue that
such a scenario can be naturally realized in a large class of models. Combining
anomaly with Z' mediation allows us to solve the tachyonic slepton problem of
the former and avoid significant fine tuning in the latter. We focus on an
NMSSM-like scenario where U(1)' gauge invariance is used to forbid a tree-level
mu term, and present concrete models, which admit successful dynamical
electroweak symmetry breaking. Gaugino masses are somewhat lighter than the
scalar masses, and the third generation squarks are lighter than the first two.
In the specific class of models under consideration, the gluino is light since
it only receives a contribution from 2-loop anomaly mediation, and it decays
dominantly into third generation quarks. Gluino production leads to distinct
LHC signals and prospects of early discovery. In addition, there is a
relatively light Z', with mass in the range of several TeV. Discovering and
studying its properties can reveal important clues about the underlying model.Comment: Minor changes: references added, typos corrected, journal versio
Focus Points and Naturalness in Supersymmetry
We analyze focus points in supersymmetric theories, where a parameter's
renormalization group trajectories meet for a family of ultraviolet boundary
conditions. We show that in a class of models including minimal supergravity,
the up-type Higgs mass has a focus point at the weak scale, where its value is
highly insensitive to the universal scalar mass. As a result, scalar masses as
large as 2 to 3 TeV are consistent with naturalness, and {\em all} squarks,
sleptons and heavy Higgs scalars may be beyond the discovery reaches of the
Large Hadron Collider and proposed linear colliders. Gaugino and Higgsino
masses are, however, still constrained to be near the weak scale. The focus
point behavior is remarkably robust, holding for both moderate and large
\tan\beta, any weak scale gaugino masses and A parameters, variations in the
top quark mass within experimental bounds, and for large variations in the
boundary condition scale.Comment: 30 pages, 17 figure
"Gaugomaly" Mediated SUSY Breaking and Conformal Sequestering
Anomaly-mediated supersymmetry breaking in the context of 4D conformally
sequestered models is combined with Poppitz-Trivedi D-type gauge-mediation. The
implementation of the two mediation mechanisms naturally leads to visible soft
masses at the same scale so that they can cooperatively solve the mu and flavor
problems of weak scale supersymmetry, as well as the tachyonic slepton problem
of pure anomaly-mediation. The tools are developed in a modular fashion for
more readily fitting into the general program of optimizing supersymmetric
dynamics in hunting for the most attractive weak scale phenomenologies combined
with Planck-scale plausibility.Comment: 14 pages, Late
Variational Monte Carlo analysis of the Hubbard model with a confining potential: one-dimensional fermionic optical lattice systems
We investigate the one-dimensional Hubbard model with a confining potential,
which may describe cold fermionic atoms trapped in an optical lattice.
Combining the variational Monte Carlo simulations with the new stochastic
reconfiguration scheme proposed by Sorella, we present an efficient method to
systematically treat the ground state properties of the confined system with a
site-dependent potential. By taking into account intersite correlations as well
as site-dependent on-site correlations, we are able to describe the coexistence
of the metallic and Mott insulating regions, which is consistent with other
numerical results. Several possible improvements of the trial states are also
addressed.Comment: 7 pages, 15 figures; removed unnecessary graphs (p.8-p.32 in the old
version are removed
- âŠ