3,671 research outputs found
Tris(3-nitropentane-2,4-dionato-κ2 O,O′)cobalt(III)
The structure of the title compound, [Co(C5H6NO4)3], consists of a CoIII ion octahedrally coordinated by three bidentate 3-nitropentane-2,4-dionate ligands. The complex was prepared via the nitration of tris(2,4-pentanedionato-κ2
O,O′)cobalt(III) with a solution of copper(II) nitrate in glacial acetic acid. The central C atom and the nitro group of one 3-nitropentane-2,4-dionate ligand are disordered over two positions with an occupancy ratio of 0.848 (4):0.152 (4). A second nitro group is also disordered over two orientations with an occupancy ratio of 0.892 (7):0.108 (7). Two of the ligand methyl groups form C—H⋯O interactions with two different nitro groups to form chains running along the c axis. Additional C—H⋯O interactions are found between ligand methyl groups and the cobalt-bound O atoms, also resulting in the formation of chains along the c axis
The historic built environment as a long-term geochemical archive: telling the time on the urban “pollution clock”
This study introduces a novel methodology for utilizing historic built environments as reliable long-term geochemical archives, addressing a gap in the reconstruction of past anthropogenic pollution levels in urban settings. For the first time, we employ high-resolution laser ablation mass spectrometry for lead isotope (206Pb/207Pb and 208Pb/206Pb) analysis on 350-year-old black crust stratigraphies found on historic built structures, providing insights into past air pollution signatures. Our findings reveal a gradual shift in the crust stratigraphy toward lower 206Pb/207Pb and higher 208Pb/206Pb isotope ratios from the older to the younger layers, indicating changes in lead sources over time. Mass balance analysis of the isotope data shows black crust layers formed since 1669 primarily contain over 90% Pb from coal burning, while other lead sources from a set of modern pollution including but not limited to leaded gasoline (introduced after 1920) become dominant (up to 60%) from 1875 onward. In contrast to global archives such as ice cores that provide integrated signals of long-distance pollution, our study contributes to a deeper understanding of localized pollution levels, specifically in urban settings. Our approach complements multiple sources of evidence, enhancing our understanding of air pollution dynamics and trends, and the impact of human activities on urban environments
Recommended from our members
Influence of Acidic pH on Hydrogen and Acetate Production by an Electrosynthetic Microbiome
Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼5). Hydrogen production by biocathodes poised at −600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ∼5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ∼6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at −765 mV (0.065 mA/cm2 sterile control at −800 mV) by the Acetobacterium-dominated community. Supplying −800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).</p
The Meaning of Living with Uncertainty for People with Motor Neurone Disease
Aim. The aim of this study was to explore the meaning of living with uncertainty for people diagnosed with motor neurone disease (MND). Background. MND is a progressive neurodegenerative condition resulting in multiple needs, arising from the complex nature of the disease trajectory. People with MND are often required to make decisions for symptom management and end-of-life care. Research into the lived experience of MND has previously highlighted: the shock of receiving such a diagnosis and prognosis; subsequent concerns relating to the future and loss; and the existential suffering for a person with MND. The lived experiences of MND accentuate the devastating nature of the disease and this can impact upon how people respond to care
Rehabilitation Therapy in Older Acute Heart Failure Patients (REHAB-HF) trial: Design and rationale.
BACKGROUND: Acute decompensated heart failure (ADHF) is a leading cause of hospitalization in older persons in the United States. Reduced physical function and frailty are major determinants of adverse outcomes in older patients with hospitalized ADHF. However, these are not addressed by current heart failure (HF) management strategies and there has been little study of exercise training in older, frail HF patients with recent ADHF.
HYPOTHESIS: Targeting physical frailty with a multi-domain structured physical rehabilitation intervention will improve physical function and reduce adverse outcomes among older patients experiencing a HF hospitalization.
STUDY DESIGN: REHAB-HF is a multi-center clinical trial in which 360 patients ≥60 years hospitalized with ADHF will be randomized either to a novel 12-week multi-domain physical rehabilitation intervention or to attention control. The goal of the intervention is to improve balance, mobility, strength and endurance utilizing reproducible, targeted exercises administered by a multi-disciplinary team with specific milestones for progression. The primary study aim is to assess the efficacy of the REHAB-HF intervention on physical function measured by total Short Physical Performance Battery score. The secondary outcome is 6-month all-cause rehospitalization. Additional outcome measures include quality of life and costs.
CONCLUSIONS: REHAB-HF is the first randomized trial of a physical function intervention in older patients with hospitalized ADHF designed to determine if addressing deficits in balance, mobility, strength and endurance improves physical function and reduces rehospitalizations. It will address key evidence gaps concerning the role of physical rehabilitation in the care of older patients, those with ADHF, frailty, and multiple comorbidities
Reliability, familiarization effect, and comparisons between a predetermined and a self-determined isometric-squat testing protocol
Purpose: This study examined the interday reliability of a predetermined and a self-determined isometric-squat test among youth soccer players. Familiarization effects were evaluated to determine the minimum number of trials necessary to obtain consistent outputs. Finally, differences between protocols were evaluated.Methods: Thirty-one youth soccer players (mean [SD] age: 13.2 [1.0] y; body mass: 54.1 [3.4] kg; stature: 166.3 [11.2] cm; percentage of estimated adult height: 92.6% [3.6%]) from a top-tier professional academy completed 4 experimental sessions for each protocol: familiarization 1, familiarization 2, test, and retest sessions. Peak force; relative peak force; impulse from 0 to 50 milliseconds, 0 to 100 milliseconds, 0 to 150 milliseconds, and 0 to 200 milliseconds; and rate of force development from 0 to 50 milliseconds, 0 to 100 milliseconds, 0 to 150 milliseconds, and 0 to 200 milliseconds were measured. Results: Both protocols displayed acceptable (intraclass correlation coefficient >=.75 and coefficient of variation ≤10%) reliability statistics for all metrics apart from rate of force development of any time epoch. Differences were found between familiarization 2 and both test and retest sessions for peak force (P = .034 and .021, respectively) and relative peak force (P = .035 and .005, respectively) across both protocols. Conclusions: The isometric-squat test is a reliable test among youth soccer players. Two familiarization sessions seem to be sufficient to ensure data stabilization. Outputs between the self-determined and predetermined are comparable; however, the latter seems preferable due to improved testing time efficiency
A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton
Title: Quantile-quantile (Q-Q) Plot of six fiber traits generated from GWAS analysis following mixed linear model (MLM) using GAPIT software. A) Fiber elongation (ELO), B) Micronaire (MIC), C) Short fiber content (SFC), D) Fiber strength (STR), E) Upper half mean fiber length (UHM), and F) Uniformity index (UI). Description of data: Q-Q plots of six fiber traits generated from GWAS analysis following MLM are included in this figure. The X and Y axis have the expected and observed negative logarithm 10 of p value, respectively generated during GWAS analysis. (DOCX 207Â kb
Evaluation of antibody response to an adjuvanted hapten-protein vaccine as a potential inhibitor of sexual maturation for farmed Atlantic salmon
An experimental contraceptive vaccine was evaluated in Atlantic salmon (Salmo salar). A peptide derived from the beta subunit of luteinizing hormone (LH) was conjugated to two different carrier proteins, bovine serum albumin (BSA) and keyhole limpet hemocyanin (KLH), and formulated with one of four immunostimulants in a water-in-oil emulsion. Specific antibody responses to the peptide and each carrier protein were evaluated. While the antibody response to KLH was stronger than the response to BSA, both carrier proteins stimulated comparable antibody responses to the LH peptide. The immunostimulant proved to be more important for enhancing the LH peptide antibody response than the carrier protein selection; vaccines containing a combination of Aeromonas salmonicida and Vibrio anguillarum stimulated significantly greater LH peptide antibody production than any of the other three immunostimulants evaluated at 12 weeks post-vaccination. This study provides proof-of-concept for specific antibody production against a hapten-carrier protein antigen in Atlantic salmon and reinforces the importance of vaccine immunostimulant selection
High-Level Production of Amorpha-4,11-Diene, a Precursor of the Antimalarial Agent Artemisinin, in Escherichia coli
BACKGROUND: Artemisinin derivatives are the key active ingredients in Artemisinin combination therapies (ACTs), the most effective therapies available for treatment of malaria. Because the raw material is extracted from plants with long growing seasons, artemisinin is often in short supply, and fermentation would be an attractive alternative production method to supplement the plant source. Previous work showed that high levels of amorpha-4,11-diene, an artemisinin precursor, can be made in Escherichia coli using a heterologous mevalonate pathway derived from yeast (Saccharomyces cerevisiae), though the reconstructed mevalonate pathway was limited at a particular enzymatic step. METHODOLOGY/ PRINCIPAL FINDINGS: By combining improvements in the heterologous mevalonate pathway with a superior fermentation process, commercially relevant titers were achieved in fed-batch fermentations. Yeast genes for HMG-CoA synthase and HMG-CoA reductase (the second and third enzymes in the pathway) were replaced with equivalent genes from Staphylococcus aureus, more than doubling production. Amorpha-4,11-diene titers were further increased by optimizing nitrogen delivery in the fermentation process. Successful cultivation of the improved strain under carbon and nitrogen restriction consistently yielded 90 g/L dry cell weight and an average titer of 27.4 g/L amorpha-4,11-diene. CONCLUSIONS/ SIGNIFICANCE: Production of >25 g/L amorpha-4,11-diene by fermentation followed by chemical conversion to artemisinin may allow for development of a process to provide an alternative source of artemisinin to be incorporated into ACTs
Sodium and Calcium Current-Mediated Pacemaker Neurons and Respiratory Rhythm Generation
The breathing motor pattern in mammals originates in brainstem networks. Whether pacemaker neurons play an obligatory role remains a key unanswered question. We performed whole-cell recordings in the pre-Botzinger complex in slice preparations from neonatal rodents and tested for pacemaker activity. We observed persistent Na+ current (INaP)-mediated bursting in ∼5% of inspiratory neurons in postnatal day 0 (P0)-P5 and in P8-P10 slices. INaP-mediated bursting was voltage dependent and blocked by 20 μm riluzole (RIL). We found Ca2+ current (ICa)-dependent bursting in 7.5% of inspiratory neurons in P8-P10 slices, but in P0-P5 slices these cells were exceedingly rare (0.6%). This bursting was voltage independent and blocked by 100 μm Cd2+ or flufenamic acid (FFA) (10-200 μm), which suggests that a Ca2+-activated inward cationic current (ICAN) underlies burst generation. These data substantiate our observation that P0-P5 slices exposed to RIL contain few (if any) pacemaker neurons, yet maintain respiratory rhythm. We also show that 20 nm TTX or coapplication of 20 μm RIL + FFA (100-200 μm) stops the respiratory rhythm, but that adding 2 μm substance P restarts it. We conclude that INaP and ICAN enhance neuronal excitability and promote rhythmogenesis, even if their magnitude is insufficient to support bursting-pacemaker activity in individual neurons. When INaP and ICAN are removed pharmacologically, the rhythm can be maintained by boosting neural excitability, which is inconsistent with a pacemaker-essential mechanism of respiratory rhythmogenesis by the pre-Botzinger complex
- …