9 research outputs found

    The formation and fate of internal waves in the South China Sea

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 521 (2015): 65-69, doi:10.1038/nature14399.Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they impact a panoply of ocean processes, such as the supply of nutrients for photosynthesis1, sediment and pollutant transport2 and acoustic transmission3; they also pose hazards for manmade structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking5, posing severe challenges for their observation and their inclusion in numerical climate models, which are sensitive to their effects6-7. Over a decade of studies8-11 have targeted the South China Sea, where the oceans’ most powerful internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their generation mechanism, variability and energy budget, however, due to the lack of in-situ data from the Luzon Strait, where extreme flow conditions make measurements challenging. Here we employ new observations and numerical models to (i) show that the waves begin as sinusoidal disturbances rather than from sharp hydraulic phenomena, (ii) reveal the existence of >200-m-high breaking internal waves in the generation region that give rise to turbulence levels >10,000 times that in the open ocean, (iii) determine that the Kuroshio western boundary current significantly refracts the internal wave field emanating from the Luzon Strait, and (iv) demonstrate a factor-of-two agreement between modelled and observed energy fluxes that enables the first observationally-supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.Our work was supported by the U.S. Office of Naval Research and the Taiwan National Science Council.2015-10-2

    Power Estimates Associated With Internal Tides From the Monterey Bay Area

    No full text
    Numerical modeling has proven to be a useful method for simulating internal tides within the coastal ocean. Monterey Bay is a location that experiences energetic semidiurnal internal tides, and they are pronounced within Monterey Submarine Canyon. Numerical simulations and field measurements indicate that the baroclinic energy fluxes there are spatially variable, leading to locations of positive and negative baroclinic energy flux divergences. Results derived from a SUNTANS (Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier-Stokes Simulator) model simulation show that Monterey Submarine Canyon's baroclinic power is net dissipative (–8.3 MW). However, sources and sinks exist throughout the canyon, and they permeate the study domain. One way to understand internal tide power is related to the ratio of the bathymetric slope (γ) to the linear internal wave characteristic slope (s). Results show large and consistent integrated surpluses of baroclinic power between 0.5 ≤ γ/s ≤ 5.5 (includes the critical ratio); some net surpluses exist when γ/s > 5.5, but are mixed with dissipative power results. When γ/s < 0.5, integrated power is net dissipative

    Wave Attenuation Experiments Over Living Shorelines Over Time: A Wave Tank Study To Assess Recreational Boating Pressures

    No full text
    With sea level rise, erosion, and human disturbances affecting coastal areas, strategies to protect and stabilize existing shorelines are needed. One popular solution to stabilize while conserving intertidal habitat is the use of “living shoreline” techniques which are designed to mimic natural shoreline communities by using native plants and animals. However, little information is available on the success of living shoreline stabilization. This project evaluated the wave energy attenuation associated with living shorelines that contained Crassostrea virginica (eastern oyster) and/or Spartina alterniflora (smooth cordgrass) in a wave tank. Four living shoreline techniques were assessed, including a control (sediment only), oysters alone, cordgrass alone, and a combination of oysters plus cordgrass. Time since deployment (newly deployed, one-year after deployment) was also assessed to see how wave energy attenuation changed with natural oyster recruitment and plant growth. Wave energy was calculated for each newly deployed and one-year old shoreline stabilization treatment using capacitance wave gauges and generated waves that were representative of boat wakes in Mosquito Lagoon, a shallow-water estuary in Florida. All one-year old treatments attenuated significantly more energy than newly-deployed treatments. The combination of one-year old S. alterniflora plus live C. virginica was the most effective as this treatment reduced 67 % of the wave energy created by a single recreational boat wake, compared to bare sediment. Natural resource managers and landowners facing shoreline erosion issues can use this information to create effective stabilization protocols that preserve shorelines while conserving native intertidal habitats

    Wave Attenuation Experiments Over Living Shorelines Over Time: A Wave Tank Study To Assess Recreational Boating Pressures

    No full text
    With sea level rise, erosion, and human disturbances affecting coastal areas, strategies to protect and stabilize existing shorelines are needed. One popular solution to stabilize while conserving intertidal habitat is the use of “living shoreline” techniques which are designed to mimic natural shoreline communities by using native plants and animals. However, little information is available on the success of living shoreline stabilization. This project evaluated the wave energy attenuation associated with living shorelines that contained Crassostrea virginica (eastern oyster) and/or Spartina alterniflora (smooth cordgrass) in a wave tank. Four living shoreline techniques were assessed, including a control (sediment only), oysters alone, cordgrass alone, and a combination of oysters plus cordgrass. Time since deployment (newly deployed, one-year after deployment) was also assessed to see how wave energy attenuation changed with natural oyster recruitment and plant growth. Wave energy was calculated for each newly deployed and one-year old shoreline stabilization treatment using capacitance wave gauges and generated waves that were representative of boat wakes in Mosquito Lagoon, a shallow-water estuary in Florida. All one-year old treatments attenuated significantly more energy than newly-deployed treatments. The combination of one-year old S. alterniflora plus live C. virginica was the most effective as this treatment reduced 67 % of the wave energy created by a single recreational boat wake, compared to bare sediment. Natural resource managers and landowners facing shoreline erosion issues can use this information to create effective stabilization protocols that preserve shorelines while conserving native intertidal habitats

    The Formation and Fate of Internal Waves In the South China Sea

    No full text
    Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis1, sediment and pollutant transport2 and acoustic transmission3; they also pose hazards for man-made structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking5, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects6,7. For over a decade, studies8-11 have targeted the South China Sea, where the oceans\u27 most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of gt;200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels \u3e10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions

    The formation and fate of internal waves in the South China Sea

    No full text
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 521 (2015): 65-69, doi:10.1038/nature14399.Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they impact a panoply of ocean processes, such as the supply of nutrients for photosynthesis1, sediment and pollutant transport2 and acoustic transmission3; they also pose hazards for manmade structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking5, posing severe challenges for their observation and their inclusion in numerical climate models, which are sensitive to their effects6-7. Over a decade of studies8-11 have targeted the South China Sea, where the oceans’ most powerful internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their generation mechanism, variability and energy budget, however, due to the lack of in-situ data from the Luzon Strait, where extreme flow conditions make measurements challenging. Here we employ new observations and numerical models to (i) show that the waves begin as sinusoidal disturbances rather than from sharp hydraulic phenomena, (ii) reveal the existence of >200-m-high breaking internal waves in the generation region that give rise to turbulence levels >10,000 times that in the open ocean, (iii) determine that the Kuroshio western boundary current significantly refracts the internal wave field emanating from the Luzon Strait, and (iv) demonstrate a factor-of-two agreement between modelled and observed energy fluxes that enables the first observationally-supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.Our work was supported by the U.S. Office of Naval Research and the Taiwan National Science Council.2015-10-2

    Wave attenuation experiments over living shorelines over time: a wave tank study to assess recreational boating pressures

    No full text
    With sea level rise, erosion, and human disturbances affecting coastal areas, strategies to protect and stabilize existing shorelines are needed. One popular solution to stabilize while conserving intertidal habitat is the use of “living shoreline” techniques which are designed to mimic natural shoreline communities by using native plants and animals. However, little information is available on the success of living shoreline stabilization. This project evaluated the wave energy attenuation associated with living shorelines that contained Crassostrea virginica (eastern oyster) and/or Spartina alterniflora (smooth cordgrass) in a wave tank. Four living shoreline techniques were assessed, including a control (sediment only), oysters alone, cordgrass alone, and a combination of oysters plus cordgrass. Time since deployment (newly deployed, one-year after deployment) was also assessed to see how wave energy attenuation changed with natural oyster recruitment and plant growth. Wave energy was calculated for each newly deployed and one-year old shoreline stabilization treatment using capacitance wave gauges and generated waves that were representative of boat wakes in Mosquito Lagoon, a shallow-water estuary in Florida. All one-year old treatments attenuated significantly more energy than newly-deployed treatments. The combination of one-year old S. alterniflora plus live C. virginica was the most effective as this treatment reduced 67 % of the wave energy created by a single recreational boat wake, compared to bare sediment. Natural resource managers and landowners facing shoreline erosion issues can use this information to create effective stabilization protocols that preserve shorelines while conserving native intertidal habitats
    corecore