2 research outputs found
Low Energy Electron Point Projection Microscopy of Suspended Graphene, the Ultimate "Microscope Slide"
Point Projection Microscopy (PPM) is used to image suspended graphene using
low-energy electrons (100-200eV). Because of the low energies used, the
graphene is neither damaged or contaminated by the electron beam. The
transparency of graphene is measured to be 74%, equivalent to electron
transmission through a sheet as thick as twice the covalent radius of
sp^2-bonded carbon. Also observed is rippling in the structure of the suspended
graphene, with a wavelength of approximately 26 nm. The interference of the
electron beam due to the diffraction off the edge of a graphene knife edge is
observed and used to calculate a virtual source size of 4.7 +/- 0.6 Angstroms
for the electron emitter. It is demonstrated that graphene can be used as both
anode and substrate in PPM in order to avoid distortions due to strong field
gradients around nano-scale objects. Graphene can be used to image objects
suspended on the sheet using PPM, and in the future, electron holography