111 research outputs found
pH-triggered phase inversion and separation of hydrophobised bacterial cellulose stabilised Pickering emulsions
The pH-triggered transitional phase behaviour of Pickering emulsions stabilised by hydrophobised bacterial cellulose (BC) is reported in this work. Neat BC was esterified with acetic (C2–), hexanoic (C6–) and dodecanoic (C12–) acids, respectively. We observed that C6– and C12–BC stabilised emulsions exhibited a pH-triggered reversible transitional phase separation. Water-in-toluene emulsions containing of 60 vol.% dispersed phase stabilised by C6– and C12–BC were produced at pH 5. Lowering the pH of the aqueous phase to 1 did not affect the emulsion type. Increasing the pH to 14, however, caused the emulsions to phase separate. This phase separation was caused by electrostatic repulsion between modified BC due to dissociable acidic surface groups at high pH, which lowered the surface coverage of the water droplets by modified BC. When the pH was re-adjusted to 1 again, w/o emulsions re-formed for C6– and C12–BC stabilised emulsions. C2–BC stabilised emulsions, on the other hand, underwent an irreversible pH-triggered transitional phase separation and inversion. This difference in phase behaviour between C2–BC and C6–/C12–BC was attributed to the hydrolysis of the ester bonds of C2–BC at high pH. This hypothesis is in good agreement with the measured degree of surface substitution (DSS) of modified BC after the pH-triggered experiments. The DSS of C2–BC decreased by 20% whilst the DSS remained constant for C6– and C12–BC
Experimental elucidation of templated crystallization and secondary processing of peptides
The crystallization of peptides offers a sustainable and inexpensive alternative to the purification process. In this study, diglycine was crystallised in porous silica, showing the porous templates' positive yet discriminating effect. The diglycine induction time was reduced by five-fold and three-fold upon crystallising in the presence of silica with pore sizes of 6 nm and 10 nm, respectively. The diglycine induction time had a direct relationship with the silica pore size. The stable form (α-form) of diglycine was crystallised in the presence of porous silica, with the diglycine crystals obtained associated with the silica particles. Further, we studied the mechanical properties of diglycine tablets for their tabletability, compactability, and compressibility. The mechanical properties of the diglycine tablets were similar to those of pure MCC, even with the presence of diglycine crystals in the tablets. The diffusion studies of the tablets using the dialysis membrane presented an extended release of diglycine through the dialysis membrane, confirming that the peptide crystal can be used for oral formulation. Hence, the crystallization of peptides preserved their mechanical and pharmacological properties. More data on different peptides can help us produce oral formulation peptides faster than usual
Surface Chemistry and Humidity in Powder Electrostatics: A Comparative Study between Tribocharging and Corona Discharge
In the present study, the correlation between surface chemical groups and the electrostatic properties of particulate materials was studied. Glass beads were modified to produce OH-, NH2-, CN-, and F-functionalized materials. The materials were charged separately both by friction and by conventional corona charging, and the results were compared. The results obtained from both methods indicated that the electrostatic properties are directly related to the surface functional group chemistry, with hydrophobic groups accumulating greater quantities of charge than hydrophilic groups. The fluorine-rich surface accumulated 5.89 times greater charge upon tribocharging with stainless steel than the hydroxyl-rich surface. However, in contrast to the tribocharging method, the charge polarity could not be determined when corona charging was used. Moreover, discharge profiles at different humidity levels (25% RH, 50% RH, and 75% RH) were obtained for each modified surface, which showed that higher humidity facilitates faster charge decay; however, this enhancement is surface chemistry-dependent. By increasing the humidity from 25% RH to 75% RH, the charge relaxation times can be accelerated 1.6 times for fluorine and 12.2 times for the cyano group. These data confirm that surface functional groups may dictate powder electrostatic behavior and account for observed charge accumulation and discharge phenomena
Sodium hydroxide catalysed silica sol-gel synthesis: Physicochemical properties of silica nanoparticles and their post-grafting using C8 and C18 alkyl-organosilanes
Sodium hydroxide (NaOH) has been shown to result in fast nucleation of highly monodispersed silica nanoparticles (SNPs). However, limited work has been reported on the physicochemical properties of the resulting SNPs and their surface modification. Herein, we demonstrate that NaOH results in poor hydrolysis of silica precursor, SNPs with adsorbed sodium ions and thermally unstable siloxane cross-linkage. The sodium ions are removed by refluxing SNPs in a 4 vol% hydrochloric acid solution. This step was also found to significantly improve the thermal stability of SNPs. The surface chemistry of the SNPs was easily modified with 0.74 mmol/g of octyltrimethoxysilane and 0.42 mmol/g of octadecyltrimethoxysilane. Functionalised SNPs exhibited superhydrophobicity (water contact angle ≥150°) and displayed a decrease between 2.46% to 3.03% in moisture sorption at 95% relative humidity. The results reveal that the acid treatment will be crucial in the design of hydroxylated and thermally stable SNPs from NaOH-catalysed synthesis
Unraveling the impact of pH on the crystallization of pharmaceutical proteins: a case study of human insulin
One of the most crucial parameters in protein crystallization is pH, as it governs the protein’s electrostatic interactions. However, the fundamental role of pH on crystallization still remains unknown. Here, we systematically investigated the crystallization of human insulin (isoelectric point 5.3) at various pHs between 6.0 and 6.7 at different supersaturation ratios, up to 20.9. Our results demonstrate that the pH has an opposing effect on solubility and nucleation rate as a shift in pH toward a more basic milieu increases the solubility by 5-fold while the onset of nucleation was accelerated by a maximum of 8.6-fold. To shed light on this opposing effect, we evaluated the protein–protein interactions as a function of pH by measuring the second virial coefficient and hydrodynamic radius and showed that a change in pH of less than one unit has no significant impact on the protein–protein interactions. As it is widely understood that the increase in protein solubility as a function of pH is due to the increase in the repulsive electrostatic interactions, we have demonstrated that the increase in insulin solubility and decrease in the onset of nucleation are independent of the protein–protein interactions. We hypothesize that it is the electrostatic interactions between both ions and solvent molecules and the protein residues that are governing the crystallization of human insulin. The findings of this study will be of crucial importance for the design of novel crystallization pathways
- …