7 research outputs found

    Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis

    Get PDF
    The central nervous system (CNS) is capable of gathering information on the body’s nutritional state and it implements appropriate behavioral and metabolic responses to changes in fuel availability. This feedback signaling of peripheral tissues ensures the maintenance of energy homeostasis. The hypothalamus is a primary site of convergence and integration for these nutrient-related feedback signals, which include central and peripheral neuronal inputs as well as hormonal signals. Increasing evidence indicates that glucose and lipids are detected by specialized fuel-sensing neurons that are integrated in these hypothalamic neuronal circuits. The purpose of this review is to outline the current understanding of fuel-sensing mechanisms in the hypothalamus, to integrate the recent findings in this field, and to address the potential role of dysregulation in these pathways in the development of obesity and type 2 diabetes mellitus

    Molecular mechanisms of muscarinic acetylcholine receptor-stimulated increase in cytosolic free Ca2+ concentration and ERK1/2 activation in the MIN6 pancreatic b-cell line

    Get PDF
    Muscarinic acetylcholine receptor (mAChR) activation of pancreatic β-cells elevates intracellular Ca2+ and potentiates glucose-stimulated insulin secretion. In addition, it activates a number of signaling molecules, including ERK1/2, whose activation has been shown to play an important role in regulating pancreatic β-cell function and mass. The aim of this work was to determine how mAChR activation elevates intracellular Ca2+ concentration ([Ca2+] i ) and activates ERK1/2 in the pancreatic β-cell line MIN6. We demonstrate that agonist-stimulated ERK1/2 activation is dependent on the activation of phospholipase C and an elevation in [Ca2+] i , but is independent of the activation of diacylglycerol-dependent protein kinase C isoenzymes. Using a pharmacological approach, we provide evidence that agonist-induced increases in [Ca2+] i and ERK activity require (1) IP3 receptor-mediated mobilization of Ca2+ from the endoplasmic reticulum, (2) influx of extracellular Ca2+ through store-operated channels, (3) closure of KATP channels, and (4) Ca2+ entry via L-type voltage-operated Ca2+ channels. Moreover, this Ca2+-dependent activation of ERK is mediated via both Ras-dependent and Ras-independent mechanisms. In summary, this study provides important insights into the multifactorial signaling mechanisms linking mAChR activation to increases in [Ca2+] i and ERK activity

    Rational targeting for prion therapeutics

    No full text

    Potential roles for prions and protein-only inheritance in cancer

    No full text

    Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses

    No full text
    corecore