48 research outputs found
Anomaly-Free Supersymmetric SO(2N+2)/U(N+1) sigma-Model Based on the SO(2N+1) Lie Algebra of the Fermion Operators
The extended supersymmetric (SUSY) sigma-model has been proposed on the bases
of SO(2N+1) Lie algebra spanned by fermion annihilation-creation operators and
pair operators. The canonical transformation, extension of an SO(2N) Bogoliubov
transformation to an SO(2N+1) group, is introduced. Embedding the SO(2N+1)
group into an SO(2N+2) group and using SO(2N+2)/U(N+1) coset variables, we have
investigated the SUSY sigma-model on the Kaehler manifold, the coset space
SO(2N+2)/U(N+1). We have constructed the Killing potential, extension of the
potential in the SO(2N)/U(N) coset space to that in the SO(2N+2)/U(N+1) coset
space. It is equivalent to the generalized density matrix whose diagonal-block
part is related to a reduced scalar potential with a Fayet-Ilipoulos term. The
f-deformed reduced scalar potential is optimized with respect to vacuum
expectation value of the sigma-model fields and a solution for one of the
SO(2N+1) group parameters has been obtained. The solution, however, is only a
small part of all solutions obtained from anomaly-free SUSY coset models. To
construct the coset models consistently, we must embed a coset coordinate in an
anomaly-free spinor representation (rep) of SO(2N+2) group and give
corresponding Kaehler and Killing potentials for an anomaly-free
SO(2N+2)/U(N+1) model based on each positive chiral spinor rep. Using such
mathematical manipulation we construct successfully the anomaly-free
SO(2N+2)/U(N+1) SUSY sigma-model and investigate new aspects which have never
been seen in the SUSY sigma-model on the Kaehler coset space SO(2N)/U(N). We
reach a f-deformed reduced scalar potential. It is minimized with respect to
the vacuum expectation value of anomaly-free SUSY sigma-model fields. Thus we
find an interesting f-deformed solution very different from the previous
solution for an anomaly-free SO(2.5+2)/(SU(5+1)*U(1)) SUSY sigma-model.Comment: 24 pages, no fiure
Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity
We explore the relation between positivity of the energy constraints in
conformal field theories and causality in their dual gravity description. Our
discussion involves CFTs with different central charges whose description, in
the gravity side, requires the inclusion of quadratic curvature corrections. It
is enough, indeed, to consider the Gauss-Bonnet term. We find that both sides
of the AdS/CFT correspondence impose a restriction on the Gauss-Bonnet
coupling. In the case of 6d supersymmetric CFTs, we show the full matching of
these restrictions. We perform this computation in two ways. First by
considering a thermal setup in a black hole background. Second by scrutinizing
the scattering of gravitons with a shock wave in AdS. The different helicities
provide the corresponding lower and upper bounds. We generalize these results
to arbitrary higher dimensions and comment on some hints and puzzles they
prompt regarding the possible existence of higher dimensional CFTs and the
extent to which the AdS/CFT correspondence would be valid for them.Comment: 31 pages, 5 figures; v2: typos fixed, cosmetic amendments and
references adde
Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach
We consider the problem of soft gluon resummation for gauge theory amplitudes
and cross sections, at next-to-eikonal order, using a Feynman diagram approach.
At the amplitude level, we prove exponentiation for the set of factorizable
contributions, and construct effective Feynman rules which can be used to
compute next-to-eikonal emissions directly in the logarithm of the amplitude,
finding agreement with earlier results obtained using path-integral methods.
For cross sections, we also consider sub-eikonal corrections to the phase space
for multiple soft-gluon emissions, which contribute to next-to-eikonal
logarithms. To clarify the discussion, we examine a class of log(1 - x) terms
in the Drell-Yan cross-section up to two loops. Our results are the first steps
towards a systematic generalization of threshold resummations to
next-to-leading power in the threshold expansion.Comment: 66 pages, 19 figure
Factorization Properties of Soft Graviton Amplitudes
We apply recently developed path integral resummation methods to perturbative
quantum gravity. In particular, we provide supporting evidence that eikonal
graviton amplitudes factorize into hard and soft parts, and confirm a recent
hypothesis that soft gravitons are modelled by vacuum expectation values of
products of certain Wilson line operators, which differ for massless and
massive particles. We also investigate terms which break this factorization,
and find that they are subleading with respect to the eikonal amplitude. The
results may help in understanding the connections between gravity and gauge
theories in more detail, as well as in studying gravitational radiation beyond
the eikonal approximation.Comment: 35 pages, 5 figure
A Variational Deduction of Second Gradient Poroelasticity Part I: General Theory
Second gradient theories have to be used to capture how local micro
heterogeneities macroscopically affect the behavior of a continuum. In this
paper a configurational space for a solid matrix filled by an unknown amount of
fluid is introduced. The Euler-Lagrange equations valid for second gradient
poromechanics, generalizing those due to Biot, are deduced by means of a
Lagrangian variational formulation. Starting from a generalized Clausius-Duhem
inequality, valid in the framework of second gradient theories, the existence
of a macroscopic solid skeleton Lagrangian deformation energy, depending on the
solid strain and the Lagrangian fluid mass density as well as on their
Lagrangian gradients, is proven.Comment: 20 page
Exacerbated Innate Host Response to SARS-CoV in Aged Non-Human Primates
The emergence of viral respiratory pathogens with pandemic potential, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and influenza A H5N1, urges the need for deciphering their pathogenesis to develop new intervention strategies. SARS-CoV infection causes acute lung injury (ALI) that may develop into life-threatening acute respiratory distress syndrome (ARDS) with advanced age correlating positively with adverse disease outcome. The molecular pathways, however, that cause virus-induced ALI/ARDS in aged individuals are ill-defined. Here, we show that SARS-CoV-infected aged macaques develop more severe pathology than young adult animals, even though viral replication levels are similar. Comprehensive genomic analyses indicate that aged macaques have a stronger host response to virus infection than young adult macaques, with an increase in differential expression of genes associated with inflammation, with NF-κB as central player, whereas expression of type I interferon (IFN)-β is reduced. Therapeutic treatment of SARS-CoV-infected aged macaques with type I IFN reduces pathology and diminishes pro-inflammatory gene expression, including interleukin-8 (IL-8) levels, without affecting virus replication in the lungs. Thus, ALI in SARS-CoV-infected aged macaques developed as a result of an exacerbated innate host response. The anti-inflammatory action of type I IFN reveals a potential intervention strategy for virus-induced ALI
Right drug, right patient, right time: aspiration or future promise for biologics in rheumatoid arthritis?
Individualising biologic disease-modifying anti-rheumatic drugs (bDMARDs) to maximise outcomes and deliver safe and cost-effective care is a key goal in the management of rheumatoid arthritis (RA). Investigation to identify predictive tools of bDMARD response is a highly active and prolific area of research. In addition to clinical phenotyping, cellular and molecular characterisation of synovial tissue and blood in patients with RA, using different technologies, can facilitate predictive testing. This narrative review will summarise the literature for the available bDMARD classes and focus on where progress has been made. We will also look ahead and consider the increasing use of ‘omics’ technologies, the potential they hold as well as the challenges, and what is needed in the future to fully realise our ambition of personalised bDMARD treatment
Detection of Prion Protein Particles in Blood Plasma of Scrapie Infected Sheep
Prion diseases are transmissible neurodegenerative diseases affecting humans and animals. The agent of the disease is the prion consisting mainly, if not solely, of a misfolded and aggregated isoform of the host-encoded prion protein (PrP). Transmission of prions can occur naturally but also accidentally, e.g. by blood transfusion, which has raised serious concerns about blood product safety and emphasized the need for a reliable diagnostic test. In this report we present a method based on surface-FIDA (fluorescence intensity distribution analysis), that exploits the high state of molecular aggregation of PrP as an unequivocal diagnostic marker of the disease, and show that it can detect infection in blood. To prepare PrP aggregates from blood plasma we introduced a detergent and lipase treatment to separate PrP from blood lipophilic components. Prion protein aggregates were subsequently precipitated by phosphotungstic acid, immobilized on a glass surface by covalently bound capture antibodies, and finally labeled with fluorescent antibody probes. Individual PrP aggregates were visualized by laser scanning microscopy where signal intensity was proportional to aggregate size. After signal processing to remove the background from low fluorescence particles, fluorescence intensities of all remaining PrP particles were summed. We detected PrP aggregates in plasma samples from six out of ten scrapie-positive sheep with no false positives from uninfected sheep. Applying simultaneous intensity and size discrimination, ten out of ten samples from scrapie sheep could be differentiated from uninfected sheep. The implications for ante mortem diagnosis of prion diseases are discussed
Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study
Peer reviewe