34 research outputs found

    Trait determinants of impulsive behavior: a comprehensive analysis of 188 rats

    Get PDF
    Impulsivity is a naturally occurring behavior that, when accentuated, can be found in a variety of neuropsychiatric disorders. The expression of trait impulsivity has been shown to change with a variety of factors, such as age and sex, but the existing literature does not reflect widespread consensus regarding the influence of modulating effects. We designed the present study to investigate, in a cohort of significant size (188 rats), the impact of four specific parameters, namely sex, age, strain and phase of estrous cycle, using the variable delay-to-signal (VDS) task. This cohort included (i) control animals from previous experiments; (ii) animals specifically raised for this study; and (iii) animals previously used for breeding purposes. Aging was associated with a general decrease in action impulsivity and an increase in delay tolerance. Females generally performed more impulsive actions than males but no differences were observed regarding delay intolerance. In terms of estrous cycle, no differences in impulsive behavior were observed and regarding strain, Wistar Han animals were, in general, more impulsive than Sprague-Dawley. In addition to further confirming, in a substantial study cohort, the decrease in impulsivity with age, we have demonstrated that both the strain and sex influences modulate different aspects of impulsive behavior manifestations.FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE) and the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement as well as national funds, through the Foundation for Science and Technology (FCT) [projects POCI-01–0145-FEDER-007038, NORTE-01-0145-FEDER-000013, NORTE-01-0145-FEDER-000023 and PTDC/NEU-SCC/5301/2014]. Researchers were supported by FCT [grant numbers SFRH/BD/52291/2013 to ME and PD/BD/114117/2015 to MRG via Inter-University Doctoral Programme in Ageing and Chronic Disease, PhDOC; PDE/BDE/113601/2015 to PSM via PhD Program in Health Sciences (Applied) and Phd-iHES; SFRH/BD/109111/2015 to AMC; SFRH/BD/51061/2010 to MMC; SFRH/SINTD/60126/2009 to AM; SFRH/BD/98675/2013 to BC; IF/00883/2013 to AJR; IF/00111/2013 to AJS; SFRH/BPD/80118/2011 to HLA]info:eu-repo/semantics/publishedVersio

    RNAi Screen of DAF-16/FOXO Target Genes in C. elegans Links Pathogenesis and Dauer Formation

    Get PDF
    The DAF-16/FOXO transcription factor is the major downstream output of the insulin/IGF1R signaling pathway controlling C. elegans dauer larva development and aging. To identify novel downstream genes affecting dauer formation, we used RNAi to screen candidate genes previously identified to be regulated by DAF-16. We used a sensitized genetic background [eri-1(mg366); sdf-9(m708)], which enhances both RNAi efficiency and constitutive dauer formation (Daf-c). Among 513 RNAi clones screened, 21 displayed a synthetic Daf-c (SynDaf) phenotype with sdf-9. One of these genes, srh-100, was previously identified to be SynDaf, but twenty have not previously been associated with dauer formation. Two of the latter genes, lys-1 and cpr-1, are known to participate in innate immunity and six more are predicted to do so, suggesting that the immune response may contribute to the dauer decision. Indeed, we show that two of these genes, lys-1 and clc-1, are required for normal resistance to Staphylococcus aureus. clc-1 is predicted to function in epithelial cohesion. Dauer formation exhibited by daf-8(m85), sdf-9(m708), and the wild-type N2 (at 27Β°C) were all enhanced by exposure to pathogenic bacteria, while not enhanced in a daf-22(m130) background. We conclude that knockdown of the genes required for proper pathogen resistance increases pathogenic infection, leading to increased dauer formation in our screen. We propose that dauer larva formation is a behavioral response to pathogens mediated by increased dauer pheromone production

    Frequent downregulation of 14-3-3 Οƒ protein and hypermethylation of 14-3-3 Οƒ gene in salivary gland adenoid cystic carcinoma

    Get PDF
    14-3-3 Οƒ, a target gene of the p53 tumour suppressor protein, has been shown to regulate the cell cycle at the G2/M checkpoint. Recent studies have demonstrated that 14-3-3 Οƒ is downregulated by hypermethylation of the CpG island in several types of cancer. In this study, we investigated the expression and methylation status of 14-3-3 Οƒ in human salivary gland adenoid cystic carcinoma (ACC) and mucoepidermoid carcinoma (MEC). Immunohistochemical analysis revealed that the positive expression rate of 14-3-3 Οƒ in ACC (one out of 14) was markedly lower than that in MEC (ten out of 10). Since most of the ACCs carried the wild-type p53 protein, downregulation of 14-3-3 Οƒ in ACC may not be due to the dysfunction of p53 pathway. Microdissection–methylation-specific PCR revealed that frequent hypermethylation of the 14-3-3 Οƒ gene was observed in ACC when compared to that in MEC. In cultured-ACC cells, we confirmed the downregulation of 14-3-3 Οƒ via hemimethylation of the gene by sequencing analysis after sodium bisulphite treatment. Furthermore, re-expression of 14-3-3 Οƒ in the ACC cells was induced by the treatment with DNA demethylating agent, 5-aza-2β€²-deoxycytidine. Irradiation apparently induced the enhanced expression of 14-3-3 Οƒ and G2/M arrest in normal salivary gland cells; however, in the ACC cells, neither induction of 14-3-3 Οƒ nor G2/M arrest was induced by irradiation. These results suggest that downregulation of 14-3-3 Οƒ might play critical roles in the neoplastic development and radiosensitivity of ACC

    MISC-1/OGC Links Mitochondrial Metabolism, Apoptosis and Insulin Secretion

    Get PDF
    We identified MISC-1 (Mitochondrial Solute Carrier) as the C. elegans orthologue of mammalian OGC (2-oxoglutarate carrier). OGC was originally identified for its ability to transfer Ξ±-ketoglutarate across the inner mitochondrial membrane. However, we found that MISC-1 and OGC are not solely involved in metabolic control. Our data show that these orthologous proteins participate in phylogenetically conserved cellular processes, like control of mitochondrial morphology and induction of apoptosis. We show that MISC-1/OGC is required for proper mitochondrial fusion and fission events in both C. elegans and human cells. Transmission electron microscopy reveals that loss of MISC-1 results in a decreased number of mitochondrial cristae, which have a blebbed appearance. Furthermore, our pull-down experiments show that MISC-1 and OGC interact with the anti-apoptotic proteins CED-9 and Bcl-xL, respectively, and with the pro-apoptotic protein ANT. Knock-down of misc-1 in C. elegans and OGC in mouse cells induces apoptosis through the caspase cascade. Genetic analysis suggests that MISC-1 controls apoptosis through the physiological pathway mediated by the LIN-35/Rb-like protein. We provide genetic and molecular evidence that absence of MISC-1 increases insulin secretion and enhances germline stem cell proliferation in C. elegans. Our study suggests that the mitochondrial metabolic protein MISC-1/OGC integrates metabolic, apoptotic and insulin secretion functions. We propose a novel mechanism by which mitochondria integrate metabolic and cell survival signals. Our data suggest that MISC-1/OGC functions by sensing the metabolic status of mitochondria and directly activate the apoptotic program when required. Our results suggest that controlling MISC-1/OGC function allows regulation of mitochondrial morphology and cell survival decisions by the metabolic needs of the cell

    Surgical treatment of superficial siderosis associated with a spinal arteriovenous malformation

    No full text
    corecore