33 research outputs found

    Proportional Relations Between Systolic, Diastolic and Mean Pulmonary Artery Pressure are Explained by Vascular Properties

    Get PDF
    Recently, it was shown that proportional relationships exist between systolic, diastolic and mean pulmonary artery pressure (Psys, Pdia and Pmean) and that they are maintained under various conditions in both health and disease. An arterial-ventricular interaction model was used to study the contribution of model parameters to the ratios Psys/Pmean, and Pdia/Pmean. The heart was modeled by a time-varying elastance function, and the arterial system by a three-element windkessel model consisting of peripheral resistance, Rp, arterial compliance Ca, and pulmonary artery characteristic impedance Z0. Baseline model parameters were estimated in control subjects and compared to values estimated in patients with pulmonary hypertension. Results indicate that experimentally derived ratios Psys/Pmean and Pdia/Pmean could be accurately reproduced using our model (1.59 and 0.61 vs. 1.55 and 0.64, respectively). Sensitivity analysis showed that the (empirical) constancy of Psys/Pmean and Pdia/Pmean was primarily based on the inverse hyperbolic relation between total vascular resistance (RT; calculated as Rp + Z0) and Ca, (i.e. constant RTCa product). Of the cardiac parameters, only heart rate affected the pressure ratios, but the contribution was small. Therefore, we conclude that proportional relations between systolic, diastolic and mean pulmonary artery pressure result from the constancy of RTCa thus from pulmonary arterial properties, with only little influence of heart rate

    Abnormal Pulmonary Artery Stiffness in Pulmonary Arterial Hypertension: In Vivo Study with Intravascular Ultrasound

    Get PDF
    BACKGROUND: There is increasing recognition that pulmonary artery stiffness is an important determinant of right ventricular (RV) afterload in pulmonary arterial hypertension (PAH). We used intravascular ultrasound (IVUS) to evaluate the mechanical properties of the elastic pulmonary arteries (PA) in subjects with PAH, and assessed the effects of PAH-specific therapy on indices of arterial stiffness. METHOD: Using IVUS and simultaneous right heart catheterisation, 20 pulmonary segments in 8 PAH subjects and 12 pulmonary segments in 8 controls were studied to determine their compliance, distensibility, elastic modulus and stiffness index β. PAH subjects underwent repeat IVUS examinations after 6-months of bosentan therapy. RESULTS: AT BASELINE, PAH SUBJECTS DEMONSTRATED GREATER STIFFNESS IN ALL MEASURED INDICES COMPARED TO CONTROLS: compliance (1.50±0.11×10(-2) mm(2/)mmHg vs 4.49±0.43×10(-2) mm(2/)mmHg, p<0.0001), distensibility (0.32±0.03%/mmHg vs 1.18±0.13%/mmHg, p<0.0001), elastic modulus (720±64 mmHg vs 198±19 mmHg, p<0.0001), and stiffness index β (15.0±1.4 vs 11.0±0.7, p = 0.046). Strong inverse exponential associations existed between mean pulmonary artery pressure and compliance (r(2) = 0.82, p<0.0001), and also between mean PAP and distensibility (r(2) = 0.79, p = 0.002). Bosentan therapy, for 6-months, was not associated with any significant changes in all indices of PA stiffness. CONCLUSION: Increased stiffness occurs in the proximal elastic PA in patients with PAH and contributes to the pathogenesis RV failure. Bosentan therapy may not be effective at improving PA stiffness

    Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation

    Get PDF
    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281–1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ‘large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ‘smaller’ arteries and veins of radii ≥ 50 μ m. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung

    Modeling the Instantaneous Pressure–Volume Relation of the Left Ventricle: A Comparison of Six Models

    Get PDF
    Simulations are useful to study the heart’s ability to generate flow and the interaction between contractility and loading conditions. The left ventricular pressure–volume (PV) relation has been shown to be nonlinear, but it is unknown whether a linear model is accurate enough for simulations. Six models were fitted to the PV-data measured in five sheep and the estimated parameters were used to simulate PV-loops. Simulated and measured PV-loops were compared with the Akaike information criterion (AIC) and the Hamming distance, a measure for geometric shape similarity. The compared models were: a time-varying elastance model with fixed volume intercept (LinFix); a time-varying elastance model with varying volume intercept (LinFree); a Langewouter’s pressure-dependent elasticity model (Langew); a sigmoidal model (Sigm); a time-varying elastance model with a systolic flow-dependent resistance (Shroff) and a model with a linear systolic and an exponential diastolic relation (Burkh). Overall, the best model is LinFree (lowest AIC), closely followed by Langew. The remaining models rank: Sigm, Shroff, LinFix and Burkh. If only the shape of the PV-loops is important, all models perform nearly identically (Hamming distance between 20 and 23%). For realistic simulation of the instantaneous PV-relation a linear model suffices

    The Pressure-Volume Relation

    No full text
    corecore