35 research outputs found

    Analyzing and Mapping Sweat Metabolomics by High-Resolution NMR Spectroscopy

    Get PDF
    The content of human sweat is studied by high-resolution NMR, and the majority of organic components most often found in sweat of conditionally healthy people are identified. Original and simple tools are designed for sweat sampling from different areas of human body. The minimal surface area needed for sampling is in the range of 50–100 cm2. On all the surface parts of the human body examined in this work, the main constituents forming a sweat metabolic profile are lactate, glycerol, pyruvate, and serine. The only exception is the sole of the foot (planta pedis), where trace amounts of glycerol are found. An attempt is made to explain the presence of specified metabolites and their possible origin

    Myogenin Regulates Exercise Capacity but Is Dispensable for Skeletal Muscle Regeneration in Adult mdx Mice

    Get PDF
    Duchenne muscular dystrophy (DMD) is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myogflox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myogflox/flox mice (mdx), Myogflox/flox mice (wild-type), and mdx:MyogfloxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted). mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function

    Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo

    No full text
    This study tested the hypothesis that acidic pH inhibits oxidative ATP supply during exercise in hand (first dorsal interosseus, FDI) and lower limb (leg anterior compartment, LEG) muscles. We measured oxidative flux and estimated mitochondrial capacity using the changes in creatine phosphate concentration ([PCr]) and pH as detected by 31P magnetic resonance (MR) spectroscopy during isometric exercise and recovery. The highest oxidative ATP flux in sustained exercise was about half the estimated mitochondrial capacity in the LEG (0.38 ± 0.06 vs. 0.90 ± 0.14 mm ATP s−1, respectively), but at the estimated capacity in the FDI (0.61 ± 0.05 vs. 0.61 ± 0.09 mm ATP s−1, respectively). During sustained exercise at a higher contraction rate, intracellular acidosis (pH < 6.88) prevented a rise in oxidative flux in the LEG and FDI despite significantly increased [ADP]. We tested whether oxidative flux could increase above that achieved in sustained exercise by raising [ADP] (> 0.24 mm) and avoiding acidosis using burst exercise. This exercise raised oxidative flux (0.69 ± 0.05 mm ATP s−1) to nearly twice that found with sustained exercise in the LEG and matched (0.65 ± 0.11 mm ATP s−1) the near maximal flux seen during sustained exercise in the FDI. Thus both muscles reached their highest oxidative fluxes in the absence of acidosis. These results show that acidosis inhibits oxidative phosphorylation in vivo and can limit ATP supply in exercising muscle to below the mitochondrial capacity
    corecore