53 research outputs found
Borrelia valaisiana resist complement-mediated killing independently of the recruitment of immune regulators and inactivation of complement components
Spirochetes belonging to the Borrelia (B.) burgdorferi sensu lato complex differ in their resistance to complement-mediated killing, particularly in regard to human serum. In the present study, we elucidate the serum and complement susceptibility of B. valaisiana, a genospecies with the potential to cause Lyme disease in Europe as well as in Asia. Among the investigated isolates, growth of ZWU3 Ny3 was not affected while growth of VS116 and Bv9 was strongly inhibited in the presence of 50% human serum. Analyzing complement activation, complement components C3, C4 and C6 were deposited on the surface of isolates VS116 and Bv9, and similarly the membrane attack complex was formed on their surface. In contrast, no surface-deposited components and no aberrations in cell morphology were detected for serum-resistant ZWU3 Ny3. While further investigating the protective role of bound complement regulators in mediating complement resistance, we discovered that none of the B. valaisiana isolates analyzed bound complement regulators Factor H, Factor H-like protein 1, C4b binding protein or C1 esterase inhibitor. In addition, B. valaisiana also lacked intrinsic proteolytic activity to degrade complement components C3, C3b, C4, C4b, and C5. Taken together, these findings suggest that certain B. valaisiana isolates differ in their capability to resist complement-mediating killing by human serum. The molecular mechanism utilized by B. valaisiana to inhibit bacteriolysis appears not to involve binding of the key host complement regulators of the alternative, classical, and lectin pathways as already known for serum-resistant Lyme disease or relapsing fever borreliae
Prevalence of hallux valgus in the general population: a systematic review and meta-analysis
BACKGROUND: Hallux valgus (HV) is a foot deformity commonly seen in medical practice, often accompanied by significant functional disability and foot pain. Despite frequent mention in a diverse body of literature, a precise estimate of the prevalence of HV is difficult to ascertain. The purpose of this systematic review was to investigate prevalence of HV in the overall population and evaluate the influence of age and gender. METHODS: Electronic databases (Medline, Embase, and CINAHL) and reference lists of included papers were searched to June 2009 for papers on HV prevalence without language restriction. MeSH terms and keywords were used relating to HV or bunions, prevalence and various synonyms. Included studies were surveys reporting original data for prevalence of HV or bunions in healthy populations of any age group. Surveys reporting prevalence data grouped with other foot deformities and in specific disease groups (e.g. rheumatoid arthritis, diabetes) were excluded. Two independent investigators quality rated all included papers on the Epidemiological Appraisal Instrument. Data on raw prevalence, population studied and methodology were extracted. Prevalence proportions and the standard error were calculated, and meta-analysis was performed using a random effects model. RESULTS: A total of 78 papers reporting results of 76 surveys (total 496,957 participants) were included and grouped by study population for meta-analysis. Pooled prevalence estimates for HV were 23% in adults aged 18-65 years (CI: 16.3 to 29.6) and 35.7% in elderly people aged over 65 years (CI: 29.5 to 42.0). Prevalence increased with age and was higher in females [30% (CI: 22 to 38)] compared to males [13% (CI: 9 to 17)]. Potential sources of bias were sampling method, study quality and method of HV diagnosis. CONCLUSIONS: Notwithstanding the wide variation in estimates, it is evident that HV is prevalent; more so in females and with increasing age. Methodological quality issues need to be addressed in interpreting reports in the literature and in future research
The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex
Is visual cortex made up of general-purpose information processing machinery, or does it consist of a collection of specialized modules? If prior knowledge, acquired from learning a set of objects is only transferable to new objects that share properties with the old, then the recognition system’s optimal organization must be one containing specialized modules for different object classes. Our analysis starts from a premise we call the invariance hypothesis: that the computational goal of the ventral stream is to compute an invariant-to-transformations and discriminative signature for recognition. The key condition enabling approximate transfer of invariance without sacrificing discriminability turns out to be that the learned and novel objects transform similarly. This implies that the optimal recognition system must contain subsystems trained only with data from similarly-transforming objects and suggests a novel interpretation of domain-specific regions like the fusiform face area (FFA). Furthermore, we can define an index of transformation-compatibility, computable from videos, that can be combined with information about the statistics of natural vision to yield predictions for which object categories ought to have domain-specific regions in agreement with the available data. The result is a unifying account linking the large literature on view-based recognition with the wealth of experimental evidence concerning domain-specific regions.National Science Foundation (U.S.). Science and Technology Center (Award CCF-1231216)National Science Foundation (U.S.) (Grant NSF-0640097)National Science Foundation (U.S.) (Grant NSF-0827427)United States. Air Force Office of Scientific Research (Grant FA8650-05-C-7262)Eugene McDermott Foundatio
Image perception and interpretation of abnormalities; can we believe our eyes? Can we do something about it?
The radiologist’s visual impression of images is transmitted, via non-visual means (the report), to the clinician. There are several complex steps from the perception of the images by the radiologist to the understanding of the impression by the clinician. With a process as complex as this, it is no wonder that errors in perception, cognition, interpretation, transmission and understanding are very common. This paper reviews the processes of perception and error generation and possible strategies for minimising them
Inhibition of Nipah Virus Infection In Vivo: Targeting an Early Stage of Paramyxovirus Fusion Activation during Viral Entry
In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses
Diagnostic techniques for inflammatory eye disease: past, present and future: a review
Investigations used to aid diagnosis and prognosticate outcomes in ocular inflammatory disorders are based on techniques that have evolved over the last two centuries have dramatically evolved with the advances in molecular biological and imaging technology. Our improved understanding of basic biological processes of infective drives of innate immunity bridging the engagement of adaptive immunity have formed techniques to tailor and develop assays, and deliver targeted treatment options. Diagnostic techniques are paramount to distinguish infective from non-infective intraocular inflammatory disease, particularly in atypical cases. The advances have enabled our ability to multiplex assay small amount of specimen quantities of intraocular samples including aqueous, vitreous or small tissue samples. Nevertheless to achieve diagnosis, techniques often require a range of assays from traditional hypersensitivity reactions and microbe specific immunoglobulin analysis to modern molecular techniques and cytokine analysis. Such approaches capitalise on the advantages of each technique, thereby improving the sensitivity and specificity of diagnoses. This review article highlights the development of laboratory diagnostic techniques for intraocular inflammatory disorders now readily available to assist in accurate identification of infective agents and appropriation of appropriate therapies as well as formulating patient stratification alongside clinical diagnoses into disease groups for clinical trials
- …