543 research outputs found

    ATP13A2 deficiency disrupts lysosomal polyamine export

    Get PDF
    ATP13A2 (PARK9) is a late endolysosomal transporter that is genetically implicated in a spectrum of neurodegenerative disorders, including Kufor-Rakeb syndrome—a parkinsonism with dementia1—and early-onset Parkinson’s disease2. ATP13A2 offers protection against genetic and environmental risk factors of Parkinson’s disease, whereas loss of ATP13A2 compromises lysosomes3. However, the transport function of ATP13A2 in lysosomes remains unclear. Here we establish ATP13A2 as a lysosomal polyamine exporter that shows the highest affinity for spermine among the polyamines examined. Polyamines stimulate the activity of purified ATP13A2, whereas ATP13A2 mutants that are implicated in disease are functionally impaired to a degree that correlates with the disease phenotype. ATP13A2 promotes the cellular uptake of polyamines by endocytosis and transports them into the cytosol, highlighting a role for endolysosomes in the uptake of polyamines into cells. At high concentrations polyamines induce cell toxicity, which is exacerbated by ATP13A2 loss due to lysosomal dysfunction, lysosomal rupture and cathepsin B activation. This phenotype is recapitulated in neurons and nematodes with impaired expression of ATP13A2 or its orthologues. We present defective lysosomal polyamine export as a mechanism for lysosome-dependent cell death that may be implicated in neurodegeneration, and shed light on the molecular identity of the mammalian polyamine transport system

    Proteomic Profile of Reversible Protein Oxidation Using PROP, Purification of Reversibly Oxidized Proteins

    Get PDF
    Signal transduction pathways that are modulated by thiol oxidation events are beginning to be uncovered, but these discoveries are limited by the availability of relatively few analytical methods to examine protein oxidation compared to other signaling events such as protein phosphorylation. We report here the coupling of PROP, a method to purify reversibly oxidized proteins, with the proteomic identification of the purified mixture using mass spectrometry. A gene ontology (GO), KEGG enrichment and Wikipathways analysis of the identified proteins indicated a significant enrichment in proteins associated with both translation and mRNA splicing. This methodology also enabled the identification of some of the specific cysteine residue targets within identified proteins that are reversibly oxidized by hydrogen peroxide treatment of intact cells. From these identifications, we determined a potential consensus sequence motif associated with oxidized cysteine residues. Furthermore, because we identified proteins and specific sites of oxidation from both abundant proteins and from far less abundant signaling proteins (e.g. hepatoma derived growth factor, prostaglandin E synthase 3), the results suggest that the PROP procedure was efficient. Thus, this PROP-proteomics methodology offers a sensitive means to identify biologically relevant redox signaling events that occur within intact cells

    Knocking at the brain’s door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures

    Get PDF
    Since the first applications of two-photon microscopy in immunology 10 years ago, the number of studies using this advanced technology has increased dramatically. The two-photon microscope allows long-term visualization of cell motility in the living tissue with minimal phototoxicity. Using this technique, we examined brain autoantigen-specific T cell behavior in experimental autoimmune encephalitomyelitis, the animal model of human multiple sclerosis. Even before disease symptoms appear, the autoreactive T cells arrive at their target organ. There they crawl along the intraluminal surface of central nervous system (CNS) blood vessels before they extravasate. In the perivascular environment, the T cells meet phagocytes that present autoantigens. This contact activates the T cells to penetrate deep into the CNS parenchyma, where the infiltrated T cells again can find antigen, be further activated, and produce cytokines, resulting in massive immune cell recruitment and clinical disease

    D-Ribose Induces Cellular Protein Glycation and Impairs Mouse Spatial Cognition

    Get PDF
    BACKGROUND: D-ribose, an important reducing monosaccharide, is highly active in the glycation of proteins, and results in the rapid production of advanced glycation end products (AGEs) in vitro. However, whether D-ribose participates in glycation and leads to production of AGEs in vivo still requires investigation. METHODOLOGY/PRINCIPAL FINDINGS: Here we treated cultured cells and mice with D-ribose and D-glucose to compare ribosylation and glucosylation for production of AGEs. Treatment with D-ribose decreased cell viability and induced more AGE accumulation in cells. C57BL/6J mice intraperitoneally injected with D-ribose for 30 days showed high blood levels of glycated proteins and AGEs. Administration of high doses D-ribose also accelerated AGE formation in the mouse brain and induced impairment of spatial learning and memory ability according to the performance in Morris water maze test. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that D-ribose but not D-glucose reacts rapidly with proteins and produces significant amounts of AGEs in both cultured cells and the mouse brain, leading to accumulation of AGEs which may impair mouse spatial cognition

    The Fischer 344 Rat Reflects Human Susceptibility to Francisella Pulmonary Challenge and Provides a New Platform for Virulence and Protection Studies

    Get PDF
    Background: The pathogenesis of Francisella tularensis, the causative agent of tularemia, has been primarily characterized in mice. However, the high degree of sensitivity of mice to bacterial challenge, especially with the human virulent strains of F. tularensis, limits this animal model for screening of defined attenuated vaccine candidates for protection studies. Methods and Findings: We analyzed the susceptibility of the Fischer 344 rat to pulmonary (intratracheal) challenge with three different subspecies (subsp) of F. tularensis that reflect different levels of virulence in humans, and characterized the bacterial replication profile in rat bone marrow-derived macrophages (BMDM). In contrast to the mouse, Fischer 344 rats exhibit a broader range of sensitivity to pulmonary challenge with the human virulent subsp. tularensis and holarctica. Unlike mice, Fischer rats exhibited a high degree of resistance to pulmonary challenge with LVS (an attenuated derivative o

    Comparative genomics reveals functional transcriptional control sequences in the Prop1 gene

    Get PDF
    Mutations in PROP1 are a common genetic cause of multiple pituitary hormone deficiency (MPHD). We used a comparative genomics approach to predict the transcriptional regulatory domains of Prop1 and tested them in cell culture and mice. A BAC transgene containing Prop1 completely rescues the Prop1 mutant phenotype, demonstrating that the regulatory elements necessary for proper PROP1 transcription are contained within the BAC. We generated DNA sequences from the PROP1 genes in lemur, pig, and five different primate species. Comparison of these with available human and mouse PROP1 sequences identified three putative regulatory sequences that are highly conserved. These are located in the PROP1 promoter proximal region, within the first intron of PROP1, and downstream of PROP1. Each of the conserved elements elicited orientation-specific enhancer activity in the context of the Drosophila alcohol dehydrogenase minimal promoter in both heterologous and pituitary-derived cells lines. The intronic element is sufficient to confer dorsal expansion of the pituitary expression domain of a transgene, suggesting that this element is important for the normal spatial expression of endogenous Prop1 during pituitary development. This study illustrates the usefulness of a comparative genomics approach in the identification of regulatory elements that may be the site of mutations responsible for some cases of MPHD

    'Gut health': a new objective in medicine?

    Get PDF
    'Gut health' is a term increasingly used in the medical literature and by the food industry. It covers multiple positive aspects of the gastrointestinal (GI) tract, such as the effective digestion and absorption of food, the absence of GI illness, normal and stable intestinal microbiota, effective immune status and a state of well-being. From a scientific point of view, however, it is still extremely unclear exactly what gut health is, how it can be defined and how it can be measured. The GI barrier adjacent to the GI microbiota appears to be the key to understanding the complex mechanisms that maintain gut health. Any impairment of the GI barrier can increase the risk of developing infectious, inflammatory and functional GI diseases, as well as extraintestinal diseases such as immune-mediated and metabolic disorders. Less clear, however, is whether GI discomfort in general can also be related to GI barrier functions. In any case, methods of assessing, improving and maintaining gut health-related GI functions are of major interest in preventive medicine

    What Do We Know About Neuropsychological Aspects Of Schizophrenia?

    Get PDF
    Application of a neuropsychological perspective to the study of schizophrenia has established a number of important facts about this disorder. Some of the key findings from the existing literature are that, while neurocognitive impairment is present in most, if not all, persons with schizophrenia, there is both substantial interpatient heterogeneity and remarkable within-patient stability of cognitive function over the long-term course of the illness. Such findings have contributed to the firm establishment of neurobiologic models of schizophrenia, and thereby help to reduce the social stigma that was sometimes associated with purely psychogenic models popular during parts of the 20th century. Neuropsychological studies in recent decades have established the primacy of cognitive functions over psychopathologic symptoms as determinants of functional capacity and independence in everyday functioning. Although the cognitive benefits of both conventional and even second generation antipsychotic medications appear marginal at best, recognition of the primacy of cognitive deficits as determinants of functional disability in schizophrenia has catalyzed recent efforts to develop targeted treatments for the cognitive deficits of this disorder. Despite these accomplishments, however, some issues remain to be resolved. Efforts to firmly establish the specific neurocognitive/neuropathologic systems responsible for schizophrenia remain elusive, as do efforts to definitively demonstrate the specific cognitive deficits underlying specific forms of functional impairment. Further progress may be fostered by recent initiatives to integrate neuropsychological studies with experimental neuroscience, perhaps leading to measures of deficits in cognitive processes more clearly associated with specific, identifiable brain systems
    corecore