20 research outputs found
Acute atomoxetine treatment of younger and older children with ADHD: A meta-analysis of tolerability and efficacy
<p>Abstract</p> <p>Background</p> <p>Atomoxetine is FDA-approved as a treatment of attention-deficit/hyperactivity disorder (ADHD) in patients aged 6 years to adult. Among pediatric clinical trials of atomoxetine to date, six with a randomized, double-blind, placebo-controlled design were used in this meta-analysis. The purpose of this article is to describe and compare the treatment response and tolerability of atomoxetine between younger children (6–7 years) and older children (8–12 years) with ADHD, as reported in these six acute treatment trials.</p> <p>Methods</p> <p>Data from six clinical trials of 6–9 weeks duration were pooled, yielding 280 subjects, ages 6–7 years, and 860 subjects, ages 8–12 years with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV)-diagnosed ADHD. Efficacy was analyzed using the ADHD Rating Scale-IV (ADHD-RS), Conners' Parent Rating Scale-revised (CPRS-R:S), and the Clinical Global Impression of ADHD Severity (CGI-ADHD-S).</p> <p>Results</p> <p>Atomoxetine was superior to placebo in both age categories for mean (SD) change in ADHD-RS total, total T, and subscale scores; 3 CPRS-R:S subscales; and CGI-ADHD-S from baseline. Although there were no significant treatment differentials between the age groups for these efficacy measures, the age groups themselves, regardless of treatment, were significantly different for ADHD-RS total (younger: ATX = -14.2 [13.8], PBO = -4.6 [10.4]; older: ATX = -15.4 [13.2], PBO = -7.3 [12.0]; p = .001), total T (younger: ATX = -15.2 [14.8], PBO = -4.9 [11.2]; older: ATX = -16.4 [14.6], PBO = -7.9 [13.1]; p = .003), and subscale scores (Inattentive: younger: ATX = -7.2 [7.5], PBO = -2.4 [5.7]; older: ATX = -8.0 [7.4], PBO = -3.9 [6.7]; p = .043; Hyperactive/Impulsive: younger: ATX = -7.0 [7.2], PBO = -2.1 [5.4]; older: ATX = -7.3 [7.0], PBO = -3.4 [6.3]; p < .001), as well as the CGI-ADHD-S score (younger: ATX = -1.2 [1.3], PBO = -0.5 [0.9]; older: ATX = -1.4 [1.3], PBO = -0.7 [1.1]; p = .010). Although few subjects discontinued from either age group due to adverse events, a significant treatment-by-age-group interaction was observed for abdominal pain (younger: ATX = 19%, PBO = 6%; older: ATX = 15%, PBO = 13%; p = .044), vomiting (younger: ATX = 14%, PBO = 2%; older: ATX = 9%, PBO = 6%; p = .053), cough (younger: ATX = 10%, PBO = 6%; older: ATX = 3%, PBO = 9%; p = .007), and pyrexia (younger: ATX = 5%, PBO = 2%; older: ATX = 3%, PBO = 5%; p = .058).</p> <p>Conclusion</p> <p>Atomoxetine is an effective and generally well-tolerated treatment of ADHD in both younger and older children as assessed by three recognized measures of symptoms in six controlled clinical trials.</p> <p>Trial Registration</p> <p>Not Applicable.</p
Advances in understanding and treating ADHD
Attention deficit hyperactivity disorder (ADHD) is a neurocognitive behavioral developmental disorder most commonly seen in childhood and adolescence, which often extends to the adult years. Relative to a decade ago, there has been extensive research into understanding the factors underlying ADHD, leading to far more treatment options available for both adolescents and adults with this disorder. Novel stimulant formulations have made it possible to tailor treatment to the duration of efficacy required by patients, and to help mitigate the potential for abuse, misuse and diversion. Several new non-stimulant options have also emerged in the past few years. Among these, cognitive behavioral interventions have proven popular in the treatment of adult ADHD, especially within the adult population who cannot or will not use medications, along with the many medication-treated patients who continue to show residual disability