21 research outputs found

    Translational Regulation of Utrophin by miRNAs

    Get PDF
    Background Utrophin is the autosomal homolog of dystrophin, the product of the Duchenne Muscular Dystrophy (DMD) locus. Its regulation is of therapeutic interest as its overexpression can compensate for dystrophin's absence in animal models of DMD. The tissue distribution and transcriptional regulation of utrophin have been characterized extensively, and more recently translational control mechanisms that may underlie its complex expression patterns have begun to be identified. Methodology/Principal Findings Using a variety of bioinformatic, molecular and cell biology techniques, we show that the muscle isoform utrophin-A is predominantly suppressed at the translational level in C2C12 myoblasts. The extent of translational inhibition is estimated to be ~99% in C2C12 cells and is mediated by both the 5â€Č- and 3â€Č-UTRs of the utrophin-A mRNA. In this study we identify five miRNAs (let-7c, miR-150, miR-196b, miR-296-5p, miR-133b) that mediate the repression, and confirm repression by the previously identified miR-206. We demonstrate that this translational repression can be overcome by blocking the actions of miRNAs, resulting in an increased level of utrophin protein in C2C12 cells. Conclusions/Significance The present study has identified key inhibitory mechanisms featuring miRNAs that regulate utrophin expression, and demonstrated that these mechanisms can be targeted to increase endogenous utrophin expression in cultured muscle cells. We suggest that miRNA-mediated inhibitory mechanisms could be targeted by methods similar to those described here as a novel strategy to increase utrophin expression as a therapy for DMD

    An economic model of long-term use of celecoxib in patients with osteoarthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous evaluations of the cost-effectiveness of the cyclooxygenase-2 selective inhibitor celecoxib (Celebrex, Pfizer Inc, USA) have produced conflicting results. The recent controversy over the cardiovascular (CV) risks of rofecoxib and other coxibs has renewed interest in the economic profile of celecoxib, the only coxib now available in the United States. The objective of our study was to evaluate the long-term cost-effectiveness of celecoxib compared with nonselective nonsteroidal anti-inflammatory drugs (nsNSAIDs) in a population of 60-year-old osteoarthritis (OA) patients with average risks of upper gastrointestinal (UGI) complications who require chronic daily NSAID therapy.</p> <p>Methods</p> <p>We used decision analysis based on data from the literature to evaluate cost-effectiveness from a modified societal perspective over patients' lifetimes, with outcomes expressed as incremental costs per quality-adjusted life-year (QALY) gained. Sensitivity tests were performed to evaluate the impacts of advancing age, CV thromboembolic event risk, different analytic horizons and alternate treatment strategies after UGI adverse events.</p> <p>Results</p> <p>Our main findings were: 1) the base model incremental cost-effectiveness ratio (ICER) for celecoxib versus nsNSAIDs was 31,097perQALY;2)theICERperQALYwas31,097 per QALY; 2) the ICER per QALY was 19,309 for a model in which UGI ulcer and ulcer complication event risks increased with advancing age; 3) the ICER per QALY was $17,120 in sensitivity analyses combining serious CV thromboembolic event (myocardial infarction, stroke, CV death) risks with base model assumptions.</p> <p>Conclusion</p> <p>Our model suggests that chronic celecoxib is cost-effective versus nsNSAIDs in a population of 60-year-old OA patients with average risks of UGI events.</p
    corecore