855 research outputs found

    Wilson Fermions on a Randomly Triangulated Manifold

    Get PDF
    A general method of constructing the Dirac operator for a randomly triangulated manifold is proposed. The fermion field and the spin connection live, respectively, on the nodes and on the links of the corresponding dual graph. The construction is carried out explicitly in 2-d, on an arbitrary orientable manifold without boundary. It can be easily converted into a computer code. The equivalence, on a sphere, of Majorana fermions and Ising spins in 2-d is rederived. The method can, in principle, be extended to higher dimensions.Comment: 18 pages, latex, 6 eps figures, fig2 corrected, Comment added in the conclusion sectio

    Quantum Gravity via Causal Dynamical Triangulations

    Full text link
    "Causal Dynamical Triangulations" (CDT) represent a lattice regularization of the sum over spacetime histories, providing us with a non-perturbative formulation of quantum gravity. The ultraviolet fixed points of the lattice theory can be used to define a continuum quantum field theory, potentially making contact with quantum gravity defined via asymptotic safety. We describe the formalism of CDT, its phase diagram, and the quantum geometries emerging from it. We also argue that the formalism should be able to describe a more general class of quantum-gravitational models of Horava-Lifshitz type.Comment: To appear in "Handbook of Spacetime", Springer Verlag. 31 page

    Perturbing General Uncorrelated Networks

    Full text link
    This paper is a direct continuation of an earlier work, where we studied Erd\"os-R\'enyi random graphs perturbed by an interaction Hamiltonian favouring the formation of short cycles. Here, we generalize these results. We keep the same interaction Hamiltonian but let it act on general graphs with uncorrelated nodes and an arbitrary given degree distribution. It is shown that the results obtained for Erd\"os-R\'enyi graphs are generic, at the qualitative level. However, scale-free graphs are an exception to this general rule and exhibit a singular behaviour, studied thoroughly in this paper, both analytically and numerically.Comment: 7 pages, 7 eps figures, 2-column revtex format, references adde

    CDT---an Entropic Theory of Quantum Gravity

    Full text link
    In these lectures we describe how a theory of quantum gravity may be constructed in terms of a lattice formulation based on so-called causal dynamical triangulations (CDT). We discuss how the continuum limit can be obtained and how to define and measure diffeomorphism-invariant correlators. In four dimensions, which has our main interest, the lattice theory has an infrared limit which can be identified with de Sitter spacetime. We explain why this infrared property of the quantum spacetime is nontrivial and due to "entropic" effects encoded in the nonperturbative path integral measure. This makes the appearance of the de Sitter universe an example of true emergence of classicality from microscopic quantum laws. We also discuss nontrivial aspects of the UV behaviour, and show how to investigate quantum fluctuations around the emergent background geometry. Finally, we consider the connection to the asymptotic safety scenario, and derive from it a new, conjectured scaling relation in CDT quantum gravity.Comment: 49 pages, many figures. Lectures presented at the "School on Non-Perturbative Methods in Quantum Field Theory" and the "Workshop on Continuum and Lattice Approaches to Quantum Gravity", Sussex, September 15th-19th 2008 . To appear as a contribution to a Springer Lecture Notes in Physics boo

    Renormalization Group Flow in CDT

    Get PDF
    We perform a first investigation of the coupling constant flow of the nonperturbative lattice model of four-dimensional quantum gravity given in terms of Causal Dynamical Triangulations (CDT). After explaining how standard concepts of lattice field theory can be adapted to the case of this background-independent theory, we define a notion of "lines of constant physics" in coupling constant space in terms of certain semiclassical properties of the dynamically generated quantum universe. Determining flow lines with the help of Monte Carlo simulations, we find that the second-order phase transition line present in this theory can be interpreted as a UV phase transition line if we allow for an anisotropic scaling of space and time.Comment: Typos corrected, 21 page

    The microscopic structure of 2D CDT coupled to matter

    Get PDF
    We show that for 1+1 dimensional Causal Dynamical Triangulations (CDT) coupled to 4 massive scalar fields one can construct an effective transfer matrix if the masses squared is larger than or equal to 0.05. The properties of this transfer matrix can explain why CDT coupled to matter can behave completely different from "pure" CDT. We identify the important critical exponent in the effective action, which may determine the universality class of the model.Comment: 14 pages,lot of figure

    Wilson loops in CDT quantum gravity

    Get PDF
    By explicit construction, we show that one can in a simple way introduce and measure gravitational holonomies and Wilson loops in lattice formulations of nonperturbative quantum gravity based on (Causal) Dynamical Triangulations. We use this set-up to investigate a class of Wilson line observables associated with the world line of a point particle coupled to quantum gravity, and deduce from their expectation values that the underlying holonomies cover the group manifold of SO(4) uniforml

    Branched Polymers with Loops

    Get PDF
    We propose a classification of critical behaviours of branched polymers for arbitrary topology. We show that in an appropriately defined double scaling limit the singular part of the partition function is universal. We calculate this partition function exactly in the generic case and perturbatively otherwise. In the discussion section we comment on the relation between branched polymer theory and Euclidean quantum gravity
    corecore