23 research outputs found

    Some exact solutions of reduced scalar Yukawa theory

    Get PDF
    The scalar Yukawa model, in which a complex scalar field interact via a real scalar field, is reduced by using covariant Green functions. It is shown that exact few-particle eigenstates of the truncated QFT Hamiltonian can be obtained in the Feshbach-Villars formulation if an unorthodox "empty" vacuum state is used. Analytic solutions for the two-body case are obtained for massless chion exchange in 3+1 dimensions and for massive chion exchange in 1+1 dimensions. Comparison is made to ladder Bethe-Salpeter, Feynman-Schwinger and quasipotential results for massive chion exchange in 3+1. Equations for the three-body case are also obtained.Comment: 19 pages, TEX, to appear in Can. J. Phy

    Inter-particle potentials in a scalar QFT with a Higgs-like mediating field

    Full text link
    We study the inter-particle potentials for few-particle systems in a scalar theory with a non-linear mediating field of the Higgs type. We use the variational method, in a reformulated Hamiltonian formalism of QFT, to derive relativistic three and four particle wave equations for stationary states of these systems. We show that the cubic and quartic non-linear terms modify the attractive Yukawa potentials but do not change the attractive nature of the interaction if the mediating fields are massive.Comment: 22 pages, 8 figures, 3 appendice

    Higgs particles interacting via a scalar Dark Matter field

    Full text link
    We study a system of two Higgs bound state, interacting via a real scalar Dark Matter mediating field, without imposing Z2Z_2 symmetry on the DM sector of the postulated Lagrangian. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the 2-body relativistic coupled integral equations are presented, and conditions for the existence of Higgs bound states is examined in a broad parameter space of DM mass and coupling constants

    Variational Derivation of Relativistic Fermion-Antifermion Wave Equations in QED

    Full text link
    We present a variational method for deriving relativistic two-fermion wave equations in a Hamiltonian formulation of QED. A reformulation of QED is performed, in which covariant Green functions are used to solve for the electromagnetic field in terms of the fermion fields. The resulting modified Hamiltonian contains the photon propagator directly. The reformulation permits one to use a simple Fock-space variational trial state to derive relativistic fermion-antifermion wave equations from the corresponding quantum field theory. We verify that the energy eigenvalues obtained from the wave equation agree with known results for positronium.Comment: 25 pages, accepted in Journal of Mathematical Physics (2004

    Variational Two Fermion Wave Equations in QED: Muonium Like Systems

    Full text link
    We consider a reformulation of QED in which covariant Green functions are used to solve for the electromagnetic field in terms of the fermion fields. The resulting modified Hamiltonian contains the photon propagator directly. A simple Fock-state variational trial function is used to derive relativistic two-fermion equations variationally from the expectation value of the Hamiltonian of the field theory. The interaction kernel of the equation is shown to be, in essence, the invariant M-matrix in lowest order. Solutions of the two-body equations are presented for muonium like system for small coupling strengths. The results compare well with the observed muonium spectrum, as well as that for hydrogen and muonic hydrogen. Anomalous magnetic moment effects are discussed

    Exact spinor-scalar bound states in a QFT with scalar interactions

    Get PDF
    We study two-particle systems in a model quantum field theory, in which scalar particles and spinor particles interact via a mediating scalar field. The Lagrangian of the model is reformulated by using covariant Green's functions to solve for the mediating field in terms of the particle fields. This results in a Hamiltonian in which the mediating-field propagator appears directly in the interaction term. It is shown that exact two-particle eigenstates of the Hamiltonian can be determined. The resulting relativistic fermion-boson equation is shown to have Dirac and Klein-Gordon one-particle limits. Analytic solutions for the bound state energy spectrum are obtained for the case of massless mediating fields.Comment: 12 pages, RevTeX, 1 figur
    corecore