961 research outputs found
A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy
We propose a new, more realistic, description of the perturbed gravitational
potential of spiral galaxies, with spiral arms having Gaussian-shaped groove
profiles. We investigate the stable stellar orbits in galactic disks, using the
new perturbed potential. The influence of the bulge mass on the stellar orbits
in the inner regions of a disk is also investigated. The new description offers
the advantage of easy control of the parameters of the Gaussian profile of its
potential. We find a range of values for the perturbation amplitude from 400 to
800 km^2 s^{-2} kpc^{-1} which implies a maximum ratio of the tangential force
to the axisymmetric force between 3% and 6%, approximately. Good
self-consistency of arm shapes is obtained between the Inner Lindblad resonance
(ILR) and the 4:1 resonance. Near the 4:1 resonance the response density starts
to deviate from the imposed logarithmic spiral form. This creates bifurcations
that appear as short arms. Therefore the deviation from a perfect logarithmic
spiral in galaxies can be understood as a natural effect of the 4:1 resonance.
Beyond the 4:1 resonance we find closed orbits which have similarities with the
arms observed in our Galaxy. In regions near the center, in the presence of a
massive bulge, elongated stellar orbits appear naturally, without imposing any
bar-shaped potential, but only extending the spiral perturbation a little
inward of the ILR. This suggests that a bar is formed with a half-size around 3
kpc by a mechanism similar to that of the spiral arms. The potential energy
perturbation that we adopted represents an important step in the direction of
self-consistency, compared to previous sine function descriptions of the
potential. Our model produces a realistic description of the spiral structure,
able to explain several details that were not yet understood.Comment: 12 pag., 11 fig. Accepted for publication in A&A, 2012 December 1
Equivalence between the Lovelock-Cartan action and a constrained gauge theory
We show that the four-dimensional Lovelock-Cartan action can be derived from
a massless gauge theory for the group with an additional BRST trivial
part. The model is originally composed by a topological sector and a BRST exact
piece and has no explicit dependence on the metric, the vierbein or a mass
parameter. The vierbein is introduced together with a mass parameter through
some BRST trivial constraints. The effect of the constraints is to identify the
vierbein with some of the additional fields, transforming the original action
into the Lovelock-Cartan one. In this scenario, the mass parameter is
identified with Newton's constant while the gauge field is identified with the
spin-connection. The symmetries of the model are also explored. Moreover, the
extension of the model to a quantum version is qualitatively discussed.Comment: 17 pages. No figures. Final version accepted for publication at the
EPJ
Bimodal chemical evolution of the Galactic disk and the Barium abundance of Cepheids
In order to understand the Barium abundance distribution in the Galactic disk
based on Cepheids, one must first be aware of important effects of the
corotation resonance, situated a little beyond the solar orbit. The thin disk
of the Galaxy is divided in two regions that are separated by a barrier
situated at that radius. Since the gas cannot get across that barrier, the
chemical evolution is independent on the two sides of it. The barrier is caused
by the opposite directions of flows of gas, on the two sides, in addition to a
Cassini-like ring void of HI (caused itself by the flows). A step in the
metallicity gradient developed at corotation, due to the difference in the
average star formation rate on the two sides, and to this lack of communication
between them. In connection with this, a proof that the spiral arms of our
Galaxy are long-lived (a few billion years) is the existence of this step. When
one studies the abundance gradients by means of stars which span a range of
ages, like the Cepheids, one has to take into account that stars, contrary to
the gas, have the possibility of crossing the corotation barrier. A few stars
born on the high metallicity side are seen on the low metallicity one, and
vice-versa. In the present work we re-discuss the data on Barium abundance in
Cepheids as a function of Galactic radius, taking into account the scenario
described above. The [Ba/H] ratio, plotted as a function of Galactic radius,
apparently presents a distribution with two branches in the external region
(beyond corotation). One can re-interpret the data and attribute the upper
branch to the stars that were born on the high metallicity side. The lower
branch, analyzed separately, indicates that the stars born beyond corotation
have a rising Barium metallicity as a function of Galactic radius.Comment: 6 pages, 7 figures, Proceedings of IAU Symposium 29
A Photometric Method for Quantifying Asymmetries in Disk Galaxies
A photometric method for quantifying deviations from axisymmetry in optical
images of disk galaxies is applied to a sample of 32 face-on and nearly face-on
spirals. The method involves comparing the relative fluxes contained within
trapezoidal sectors arranged symmetrically about the galaxy center of light,
excluding the bulge and/or barred regions. Such a method has several advantages
over others, especially when quantifying asymmetry in flocculent galaxies.
Specifically, the averaging of large regions improves the signal-to-noise in
the measurements; the method is not strongly affected by the presence of spiral
arms; and it identifies the kinds of asymmetry that are likely to be
dynamically important. Application of this "method of sectors" to R-band images
of 32 disk galaxies indicates that about 30% of spirals show deviations from
axisymmetry at the 5-sigma level.Comment: 17 pages, 2 tables and 6 figures, uses psfig and AAS LaTex; to appear
in A
- …