1,506 research outputs found
Learning 101: The untaught basics
Despite the accessibility of a wealth of information in the current era-books, universities, and online massive open online courses (MOOCs)-well-intentioned and hard-working students often fail to learn effectively due to deficient learning techniques or improper mind-sets. Two things, in particular, hinder students from achieving their potential. First, the students' intuition regarding how learning works is often flawed and counterproductive; second, despite significant progress in the research discipline of "learning sciences," these hard-earned scientific insights have not yet filtered their way through the research community to the students who stand to benefit most from this knowledge
Cognitive Connectivity Resilience in Multi-layer Remotely Deployed Mobile Internet of Things
Enabling the Internet of things in remote areas without traditional
communication infrastructure requires a multi-layer network architecture. The
devices in the overlay network are required to provide coverage to the underlay
devices as well as to remain connected to other overlay devices. The
coordination, planning, and design of such two-layer heterogeneous networks is
an important problem to address. Moreover, the mobility of the nodes and their
vulnerability to adversaries pose new challenges to the connectivity. For
instance, the connectivity of devices can be affected by changes in the
network, e.g., the mobility of the underlay devices or the unavailability of
overlay devices due to failure or adversarial attacks. To this end, this work
proposes a feedback based adaptive, self-configurable, and resilient framework
for the overlay network that cognitively adapts to the changes in the network
to provide reliable connectivity between spatially dispersed smart devices. Our
results show that if sufficient overlay devices are available, the framework
leads to a connected configuration that ensures a high coverage of the mobile
underlay network. Moreover, the framework can actively reconfigure itself in
the event of varying levels of device failure.Comment: To appear in IEEE Global Communications Conference (Globecom 2017
A Stochastic Geometry-based Demand Response Management Framework for Cellular Networks Powered by Smart Grid
In this paper, the production decisions across multiple energy suppliers in
smart grid, powering cellular networks are investigated. The suppliers are
characterized by different offered prices and pollutant emissions levels. The
challenge is to decide the amount of energy provided by each supplier to each
of the operators such that their profitability is maximized while respecting
the maximum tolerated level of CO2 emissions. The cellular operators are
characterized by their offered quality of service (QoS) to the subscribers and
the number of users that determines their energy requirements. Stochastic
geometry is used to determine the average power needed to achieve the target
probability of coverage for each operator. The total average power requirements
of all networks are fed to an optimization framework to find the optimal amount
of energy to be provided from each supplier to the operators. The generalized
-fair utility function is used to avoid production bias among the
suppliers based on profitability of generation. Results illustrate the
production behavior of the energy suppliers versus QoS level, cost of energy,
capacity of generation, and level of fairness.Comment: 6 pages, 4 figure
- …