4,316 research outputs found

    A pseudo empirical likelihood approach for stratified samples with nonresponse

    Full text link
    Nonresponse is common in surveys. When the response probability of a survey variable YY depends on YY through an observed auxiliary categorical variable ZZ (i.e., the response probability of YY is conditionally independent of YY given ZZ), a simple method often used in practice is to use ZZ categories as imputation cells and construct estimators by imputing nonrespondents or reweighting respondents within each imputation cell. This simple method, however, is inefficient when some ZZ categories have small sizes and ad hoc methods are often applied to collapse small imputation cells. Assuming a parametric model on the conditional probability of ZZ given YY and a nonparametric model on the distribution of YY, we develop a pseudo empirical likelihood method to provide more efficient survey estimators. Our method avoids any ad hoc collapsing small ZZ categories, since reweighting or imputation is done across ZZ categories. Asymptotic distributions for estimators of population means based on the pseudo empirical likelihood method are derived. For variance estimation, we consider a bootstrap procedure and its consistency is established. Some simulation results are provided to assess the finite sample performance of the proposed estimators.Comment: Published in at http://dx.doi.org/10.1214/07-AOS578 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Electron-nuclear entanglement in the cold lithium gas

    Full text link
    We study the ground-state entanglement and thermal entanglement in the hyperfine interaction of the lithium atom. We give the relationship between the entanglement and both temperature and external magnetic fields.Comment: 7 pages, 3 figure

    The Role of Chaos in One-Dimensional Heat Conductivity

    Full text link
    We investigate the heat conduction in a quasi 1-D gas model with various degree of chaos. Our calculations indicate that the heat conductivity κ\kappa is independent of system size when the chaos of the channel is strong enough. The different diffusion behaviors for the cases of chaotic and non-chaotic channels are also studied. The numerical results of divergent exponent α\alpha of heat conduction and diffusion exponent β\beta are in consistent with the formula α=2−2/β\alpha=2-2/\beta. We explore the temperature profiles numerically and analytically, which show that the temperature jump is primarily attributed to superdiffusion for both non-chaotic and chaotic cases, and for the latter case of superdiffusion the finite-size affects the value of β\beta remarkably.Comment: 6 pages, 7 figure

    Heat conductivity in the presence of a quantized degree of freedom

    Full text link
    We propose a model with a quantized degree of freedom to study the heat transport in quasi-one dimensional system. Our simulations reveal three distinct temperature regimes. In particular, the intermediate regime is characterized by heat conductivity with a temperature exponent γ\gamma much greater than 1/2 that was generally found in systems with point-like particles. A dynamical investigation indicates the occurrence of non-equipartition behavior in this regime. Moreover, the corresponding Poincar\'e section also shows remarkably characteristic patterns, completely different from the cases of point-like particles.Comment: 7 pages, 4 figure
    • …
    corecore