228 research outputs found

    Searching for plasticity in dissociated cortical cultures on multi-electrode arrays

    Get PDF
    We attempted to induce functional plasticity in dense cultures of cortical cells using stimulation through extracellular electrodes embedded in the culture dish substrate (multi-electrode arrays, or MEAs). We looked for plasticity expressed in changes in spontaneous burst patterns, and in array-wide response patterns to electrical stimuli, following several induction protocols related to those used in the literature, as well as some novel ones. Experiments were performed with spontaneous culture-wide bursting suppressed by either distributed electrical stimulation or by elevated extracellular magnesium concentrations as well as with spontaneous bursting untreated. Changes concomitant with induction were no larger in magnitude than changes that occurred spontaneously, except in one novel protocol in which spontaneous bursts were quieted using distributed electrical stimulation

    ScanImage: Flexible software for operating laser scanning microscopes

    Get PDF
    BACKGROUND: Laser scanning microscopy is a powerful tool for analyzing the structure and function of biological specimens. Although numerous commercial laser scanning microscopes exist, some of the more interesting and challenging applications demand custom design. A major impediment to custom design is the difficulty of building custom data acquisition hardware and writing the complex software required to run the laser scanning microscope. RESULTS: We describe a simple, software-based approach to operating a laser scanning microscope without the need for custom data acquisition hardware. Data acquisition and control of laser scanning are achieved through standard data acquisition boards. The entire burden of signal integration and image processing is placed on the CPU of the computer. We quantitate the effectiveness of our data acquisition and signal conditioning algorithm under a variety of conditions. We implement our approach in an open source software package (ScanImage) and describe its functionality. CONCLUSIONS: We present ScanImage, software to run a flexible laser scanning microscope that allows easy custom design

    Changes in Gray Matter Induced by Learning—Revisited

    Get PDF
    BACKGROUND: Recently, activation-dependant structural brain plasticity in humans has been demonstrated in adults after three months of training a visio-motor skill. Learning three-ball cascade juggling was associated with a transient and highly selective increase in brain gray matter in the occipito-temporal cortex comprising the motion sensitive area hMT/V5 bilaterally. However, the exact time-scale of usage-dependant structural changes occur is still unknown. A better understanding of the temporal parameters may help to elucidate to what extent this type of cortical plasticity contributes to fast adapting cortical processes that may be relevant to learning. PRINCIPAL FINDINGS: Using a 3 Tesla scanner and monitoring whole brain structure we repeated and extended our original study in 20 healthy adult volunteers, focussing on the temporal aspects of the structural changes and investigated whether these changes are performance or exercise dependant. The data confirmed our earlier observation using a mean effects analysis and in addition showed that learning to juggle can alter gray matter in the occipito-temporal cortex as early as after 7 days of training. Neither performance nor exercise alone could explain these changes. CONCLUSION: We suggest that the qualitative change (i.e. learning of a new task) is more critical for the brain to change its structure than continued training of an already-learned task

    miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity

    Get PDF
    Using quantitative analyses, we identified microRNAs (miRNAs) that were abundantly expressed in visual cortex and that responded to dark rearing and/or monocular deprivation. The most substantially altered miRNA, miR-132, was rapidly upregulated after eye opening and was delayed by dark rearing. In vivo inhibition of miR-132 in mice prevented ocular dominance plasticity in identified neurons following monocular deprivation and affected the maturation of dendritic spines, demonstrating its critical role in the plasticity of visual cortex circuits.National Eye Institute (Ruth L. Kirschstein Postdoctoral Fellowship 1F32EY020066-01)Simons Foundation (Postdoctoral Fellowship)National Institutes of Health (U.S.) (EY017098)National Institutes of Health (U.S.) (EY007023

    Complex morphology and functional dynamics of vital murine intestinal mucosa revealed by autofluorescence 2-photon microscopy

    Get PDF
    The mucosa of the gastrointestinal tract is a dynamic tissue composed of numerous cell types with complex cellular functions. Study of the vital intestinal mucosa has been hampered by lack of suitable model systems. We here present a novel animal model that enables highly resolved three-dimensional imaging of the vital murine intestine in anaesthetized mice. Using intravital autofluorescence 2-photon (A2P) microscopy we studied the choreographed interactions of enterocytes, goblet cells, enteroendocrine cells and brush cells with other cellular constituents of the small intestinal mucosa over several hours at a subcellular resolution and in three dimensions. Vigorously moving lymphoid cells and their interaction with constituent parts of the lamina propria were examined and quantitatively analyzed. Nuclear and lectin staining permitted simultaneous characterization of autofluorescence and admitted dyes and yielded additional spectral information that is crucial to the interpretation of the complex intestinal mucosa. This novel intravital approach provides detailed insights into the physiology of the small intestine and especially opens a new window for investigating cellular dynamics under nearly physiological conditions

    Unconventional Transcriptional Response to Environmental Enrichment in a Mouse Model of Rett Syndrome

    Get PDF
    Background: Rett syndrome (RTT) is an X-linked postnatal neurodevelopmental disorder caused by mutations in the gene encoding methyl-CpG binding protein 2 (MeCP2) and one of the leading causes of mental retardation in females. RTT is characterized by psychomotor retardation, purposeless hand movements, autistic-like behavior and abnormal gait. We studied the effects of environmental enrichment (EE) on the phenotypic manifestations of a RTT mouse model that lacks MeCP2 (Mecp2 2/y). Principal Findings: We found that EE delayed and attenuated some neurological alterations presented by Mecp2 2/y mice and prevented the development of motor discoordination and anxiety-related abnormalities. To define the molecular correlate of this beneficial effect of EE, we analyzed the expression of several synaptic marker genes whose expression is increased by EE in several mouse models. Conclusions/Significance: We found that EE induced downregulation of several synaptic markers, suggesting that th

    Principles and Fundamentals of Optical Imaging

    Get PDF
    In this chapter I will give a brief general introduction to optical imaging and then discuss in more detail some of the methods specifically used for imaging cortical dynamics today. Absorption and fluorescence microscopy can be used to form direct, diffraction-limited images but standard methods are often only applicable to superficial layers of cortical tissue. Two-photon microscopy takes an intermediate role since the illumination pathway is diffraction-limited but the detection pathway is not. Losses in the illumination path can be compensated using higher laser power. Since the detection pathway does not require image formation, the method can substantially increase the imaging depth. Understanding the role of scattering is important in this case since non-descanned detection can substantially enhance the imaging performance. Finally, I will discuss some of the most widely used imaging methods that all rely on diffuse scattering such as diffuse optical tomography, laser speckle imaging, and intrinsic optical imaging. These purely scattering-based methods offer a much higher imaging depth, although at a substantially reduced spatial resolution

    Alterations in the Properties of Neonatal Thalamocortical Synapses with Time in In Vitro Slices

    Get PDF
    New synapses are constantly being generated and lost in the living brain with only a subset of these being stabilized to form an enduring component of neuronal circuitry. The properties of synaptic transmission have primarily been established in a variety of in vitro neuronal preparations. It is not clear, however, if newly-formed and persistent synapses contribute to the results of these studies consistently throughout the lifespan of these preparations. In neonatal somatosensory, barrel, cortex we have previously hypothesized that a population of thalamocortical synapses displaying unusually slow kinetics represent newly-formed, default-transient synapses. This clear phenotype would provide an ideal tool to investigate if such newly formed synapses consistently contribute to synaptic transmission throughout a normal experimental protocol. We show that the proportion of synapses recorded in vitro displaying slow kinetics decreases with time after brain slice preparation. However, slow synapses persist in vitro in the presence of either minocycline, an inhibitor of microglia-mediated synapse elimination, or the TrkB agonist 7,8-dihydroxyflavone a promoter of synapse formation. These findings show that the observed properties of synaptic transmission may systematically change with time in vitro in a standard brain slice preparation
    corecore