8 research outputs found

    Hypoxia-inducible factor-1alpha is a critical mediator of hypoxia induced apoptosis in cardiac H9c2 and kidney epithelial HK-2 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia inducible factor-1 (HIF-1) is a transcription factor that functions to maintain cellular homeostasis in response to hypoxia. There is evidence that HIF-1 can also trigger apoptosis, possibly when cellular responses are inadequate to meet energy demands under hypoxic conditions.</p> <p>Methods</p> <p>Cardiac derived H9c2 and renal tubular epithelial HK-2 cells expressing either the wild type oxygen regulated subunit of HIF-1 (pcDNA3-Hif-1α) or a dominant negative version that lacked both DNA binding and transactivation domains (pcDNA3-DN-Hif-1α), were maintained in culture and exposed to hypoxia. An RNA interference approach was also employed to selectively knockdown expression of Hif-1α. Apoptosis was analyzed in both H9c2 and HK-2 cells by Hoechst and TUNEL staining, caspase 3 activity assays and activation of pro-apoptotic Bcl2 family member Bax.</p> <p>Results</p> <p>Overexpression of pcDNA3-DN-Hif-1α led to a significant reduction in hypoxia -induced apoptosis (17 ± 2%, <it>P </it>< 0.01) in H9c2 cells compared to both control-transfected and wild type Hif-1α transfected cells. Moreover, selective ablation of HIF-1α protein expression by RNA interference in H9c2 cells led to 55% reduction of caspase 3 activity and 46% reduction in the number of apoptotic cells as determined by Hoechst 33258 staining, after hypoxia. Finally, upregulation of the pro-apoptotic protein, Bax, was found in H9c2 cells overexpressing full-length pcDNA3-HA-HIF-1α exposed to hypoxia. In HK-2 cells overexpression of wild-type Hif-1α led to a two-fold increase in Hif-1α levels during hypoxia. This resulted in a 3.4-fold increase in apoptotic cells and a concomitant increase in caspase 3 activity during hypoxia when compared to vector transfected control cells. HIF-1α also induced upregulation of Bax in HK-2 cells. In addition, introduction of dominant negative Hif-1α constructs in both H9c2 and HK-2 -cells led to decreased active Bax expression.</p> <p>Conclusion</p> <p>These data demonstrate that HIF-1α is an important component of the apoptotic signaling machinery in the two cell types.</p

    Functional interdependence of BRD4 and DOT1L in MLL leukemia.

    Get PDF
    Targeted therapies against disruptor of telomeric silencing 1-like (DOT1L) and bromodomain-containing protein 4 (BRD4) are currently being evaluated in clinical trials. However, the mechanisms by which BRD4 and DOT1L regulate leukemogenic transcription programs remain unclear. Using quantitative proteomics, chemoproteomics and biochemical fractionation, we found that native BRD4 and DOT1L exist in separate protein complexes. Genetic disruption or small-molecule inhibition of BRD4 and DOT1L showed marked synergistic activity against MLL leukemia cell lines, primary human leukemia cells and mouse leukemia models. Mechanistically, we found a previously unrecognized functional collaboration between DOT1L and BRD4 that is especially important at highly transcribed genes in proximity to superenhancers. DOT1L, via dimethylated histone H3 K79, facilitates histone H4 acetylation, which in turn regulates the binding of BRD4 to chromatin. These data provide new insights into the regulation of transcription and specify a molecular framework for therapeutic intervention in this disease with poor prognosis
    corecore