3,374 research outputs found

    New Insights Into Cerebrovascular Pathophysiology and Hypertension

    Get PDF
    Despite advances in acute management and prevention of cerebrovascular disease, stroke and vascular cognitive impairment together remain the world's leading cause of death and neurological disability. Hypertension and its consequences are associated with over 50% of ischemic and 70% of hemorrhagic strokes but despite good control of blood pressure (BP), there remains a 10% risk of recurrent cerebrovascular events, and there is no proven strategy to prevent vascular cognitive impairment. Hypertension evolves over the lifespan, from predominant sympathetically driven hypertension with elevated mean BP in early and mid-life to a late-life phenotype of increasing systolic and falling diastolic pressures, associated with increased arterial stiffness and aortic pulsatility. This pattern may partially explain both the increasing incidence of stroke in younger adults as well as late-onset, chronic cerebrovascular injury associated with concurrent systolic hypertension and historic mid-life diastolic hypertension. With increasing arterial stiffness and autonomic dysfunction, BP variability increases, independently predicting the risk of ischemic and intracerebral hemorrhage, and is potentially modifiable beyond control of mean BP. However, the interaction between hypertension and control of cerebral blood flow remains poorly understood. Cerebral small vessel disease is associated with increased pulsatility in large cerebral vessels and reduced reactivity to carbon dioxide, both of which are being targeted in early phase clinical trials. Cerebral arterial pulsatility is mainly dependent upon increased transmission of aortic pulsatility via stiff vessels to the brain, while cerebrovascular reactivity reflects endothelial dysfunction. In contrast, although cerebral autoregulation is critical to adapt cerebral tone to BP fluctuations to maintain cerebral blood flow, its role as a modifiable risk factor for cerebrovascular disease is uncertain. New insights into hypertension-associated cerebrovascular pathophysiology may provide key targets to prevent chronic cerebrovascular disease, acute events, and vascular cognitive impairment

    Antimicrobial Activity of the Quinoline Derivative HT61 against Staphylococcus aureus Biofilms.

    Get PDF
    Staphylococcus aureus biofilms are a significant problem in health care settings, partly due to the presence of a nondividing, antibiotic-tolerant subpopulation. Here we evaluated treatment of S. aureus UAMS-1 biofilms with HT61, a quinoline derivative shown to be effective against nondividing Staphylococcus spp. HT61 was effective at reducing biofilm viability and was associated with increased expression of cell wall stress and division proteins, confirming its potential as a treatment for S. aureus biofilm infections

    Participating locally and nationally: explaining the offline and online activism of British party members

    Get PDF
    Drawing on survey data on the members of six British parties gathered in the immediate aftermath of the general election of 2015, this article addresses the question of what members do for their parties during campaigns. It identifies a key distinction between traditional forms of activity and more recent forms of online campaign participation. While the well-established general incentives theory of participation continues to offer a useful basis for explaining both types of campaign activism, we find that our understanding is significantly enhanced by considering the impact of national and local political contexts. Whereas the former chiefly adds explanatory value to the model of online participation by party members, the latter considerably improves the model of offline participation

    Changes in undergraduate student alcohol consumption as they progress through university

    Get PDF
    BACKGROUND: Unhealthy alcohol use amongst university students is a major public health concern. Although previous studies suggest a raised level of consumption amongst the UK student population there is little consistent information available about the pattern of alcohol consumption as they progress through university. The aim of the current research was to describe drinking patterns of UK full-time undergraduate students as they progress through their degree course. METHOD: Data were collected over three years from 5895 undergraduate students who began their studies in either 2000 or 2001. Longitudinal data (i.e. Years 1–3) were available from 225 students. The remaining 5670 students all responded to at least one of the three surveys (Year 1 n = 2843; Year 2 n = 2219; Year 3 n = 1805). Results: Students reported consuming significantly more units of alcohol per week at Year 1 than at Years 2 or 3 of their degree. Male students reported a higher consumption of units of alcohol than their female peers. When alcohol intake was classified using the Royal College of Physicians guidelines [1] there was no difference between male and females students in terms of the percentage exceeding recommended limits. Compared to those who were low level consumers students who reported drinking above low levels at Year 1 had at least 10 times the odds of continuing to consume above low levels at year 3. Students who reported higher levels of drinking were more likely to report that alcohol had a negative impact on their studies, finances and physical health. Consistent with the reduction in units over time students reported lower levels of negative impact during Year 3 when compared to Year 1. CONCLUSION: The current findings suggest that student alcohol consumption declines over their undergraduate studies; however weekly levels of consumption at Year 3 remain high for a substantial number of students. The persistence of high levels of consumption in a large population of students suggests the need for effective preventative and treatment interventions for all year groups

    Evaluation of X-ray table mattresses for radiation attenuation and impact on image quality

    Get PDF
    Introduction Mattresses in the radiology department tend to be an overlooked aspect of imaging equipment. This paper evaluates the radiation attenuation characteristics of mattresses and the effect they have on image quality. Method Thirteen mattresses (from new to 20 years of age) were evaluated. Incident air kerma (IAK) was measured in two conditions, with and without mattress over a range of exposure factors using a digital dosimeter. The percentage change was calculated and applied to the set mAs to illustrate the “effective mAs” delivered to an image receptor. Image quality was assessed by calculating the inverse image quality factor (IQFinv) using a commercially available phantom (CDRAD) for the same exposure factors. The correlation of age and attenuation and image quality was calculated. Results Measured IAK and image quality was affected by the addition of a mattress. IAK decreased due to attenuation and IQFinv indicated worse image quality. IAK correlated negatively with mattress age indicating that older mattresses have higher attenuation properties. The clinical impact for radiation increase was insignificant as it resulted in an average of 0.05 change in mAs. There was no correlation between age and image quality. Conclusion The results indicate that while the presence of a mattress does impact on transmitted radiation and the quality of the image, the clinical impact is insignificant. Attenuation correlates with age but with no clinical significance. There is no correlation between age and image quality. Implications for practice Quality control tests for attenuation and impact on image quality are not required in clinical practice. The method could be used by manufacturers to test new materials and mattresses and could provide users with specifications of new products

    Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells

    Get PDF
    Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator

    Congenital bovine spinal dysmyelination is caused by a missense mutation in the SPAST gene

    Get PDF
    Bovine spinal dysmyelination (BSD) is a recessive congenital neurodegenerative disease in cattle (Bos taurus) characterized by pathological changes of the myelin sheaths in the spinal cord. The occurrence of BSD is a longstanding problem in the American Brown Swiss (ABS) breed and in several European cattle breeds upgraded with ABS. Here, we show that the disease locus on bovine chromosome 11 harbors the SPAST gene that, when mutated, is responsible for the human disorder hereditary spastic paraplegia (HSP). Initially, SPAST encoding Spastin was considered a less likely candidate gene for BSD since the modes of inheritance as well as the time of onset and severity of symptoms differ widely between HSP and BSD. However, sequence analysis of the bovine SPAST gene in affected animals identified a R560Q substitution at a position in the ATPase domain of the Spastin protein that is invariant from insects to mammals. Interestingly, three different mutations in human SPAST gene at the equivalent position are known to cause HSP. To explore this observation further, we genotyped more than 3,100 animals of various cattle breeds and found that the glutamine allele exclusively occurred in breeds upgraded with ABS. Furthermore, all confirmed BSD carriers were heterozygous, while all affected calves were homozygous for the glutamine allele consistent with recessive transmission of the underlying mutation and complete penetrance in the homozygous state. Subsequent analysis of recombinant Spastin in vitro showed that the R560Q substitution severely impaired the ATPase activity, demonstrating a causal relationship between the SPAST mutation and BSD

    Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    Get PDF
    Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction

    An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1

    Get PDF
    open access articlePseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and biofilm-associated antibiotic resistance. Our model employs a genomics-driven workflow to assemble the complete MPAO1 genome, identify unique and conserved genes by comparative genomics with the PAO1 reference strain and genes missed within existing assemblies by proteogenomics. Among over 200 unique MPAO1 genes, we identified six general essential genes that were overlooked when mapping public Tn-seq data sets against PAO1, including an antitoxin. Genomic data were integrated with phenotypic data from an experimental workflow using a user-friendly, soft lithography-based microfluidic flow chamber for biofilm growth and a screen with the Tn-mutant library in microtiter plates. The screen identified hitherto unknown genes involved in biofilm growth and antibiotic resistance. Experiments conducted with the flow chamber across three laboratories delivered reproducible data on P. aeruginosa biofilms and validated the function of both known genes and genes identified in the Tn-mutant screens. Differential protein abundance data from planktonic cells versus biofilm confirmed the upregulation of candidates known to affect biofilm formation, of structural and secreted proteins of type VI secretion systems, and provided proteogenomic evidence for some missed MPAO1 genes. This integrated, broadly applicable model promises to improve the mechanistic understanding of biofilm formation, antimicrobial tolerance, and resistance evolution in biofilms
    corecore