158 research outputs found

    Reactive oxygen species initiate luminal but not basal cell death in cultured human mammary alveolar structures: a potential regulator of involution

    Get PDF
    Post-lactational involution of the mammary gland is initiated within days of weaning. Clearing of cells occurs by apoptosis of the milk-secreting luminal cells in the alveoli and through stromal tissue remodeling to return the gland almost completely to its pre-pregnant state. The pathways that specifically target involution of the luminal cells in the alveoli but not the basal and ductal cells are poorly understood. In this study we show in cultured human mammary alveolar structures that the involution process is initiated by fresh media withdrawal, and is characterized by cellular oxidative stress, expression of activated macrophage marker CD68 and finally complete clearing of the luminal but not basal epithelial layer. This process can be simulated by ectopic addition of reactive oxygen species (ROS) in cultures without media withdrawal. Cells isolated from post-involution alveoli were enriched for the CD49f+ mammary stem cell (MaSC) phenotype and were able to reproduce a complete alveolar structure in subcultures without any significant loss in viability. We propose that the ROS produced by accumulated milk breakdown post-weaning may be the mechanism underlying the selective involution of secretory alveolar luminal cells, and that our culture model represents an useful means to investigate this and other mechanisms further

    Grain Size and Texture of Cu2ZnSnS4 Thin Films Synthesized by Cosputtering Binary Sulfides and Annealing: Effects of Processing Conditions and Sodium

    Full text link
    We investigate the synthesis of kesterite Cu2ZnSnS4 (CZTS) polycrystalline thin films using cosputtering from binary sulfide targets followed by annealing in sulfur vapor at 500 {\deg}C to 650 {\deg}C. The films are the kesterite CZTS phase as indicated by x-ray diffraction, Raman scattering, and optical absorption measurements. The films exhibit (112) fiber texture and preferred low-angle and Sigma3 grain boundary populations which have been demonstrated to reduce recombination in Cu(In,Ga)Se2 and CdTe films. The grain growth kinetics are investigated as functions of temperature and the addition of Na. Significantly, lateral grain sizes above 1 um are demonstrated for samples grown on Na-free glass,demonstrating the feasibility for CZTS growth on substrates other than soda lime glass

    Bilateral inhibition of HAUSP deubiquitinase by a viral interferon regulatory factor protein

    Get PDF
    Herpesvirus-associated ubiquitin specific protease (HAUSP) regulates the stability of p53 and MDM2, implicating HAUSP as a therapeutic target for tuning p53-mediated anti-tumor activity. Here, we report the structural analysis of HAUSP with Kaposi’s sarcoma-associated herpesvirus vIRF4 and the discovery of two vIRF4-derived peptides, vif1 and vif2, as potent and selective HAUSP antagonists. This analysis reveals a bilateral belt-type interaction resulting in inhibition of HAUSP. The vif1 peptide binds the HAUSP TRAF domain, competitively blocking substrate binding, while the vif2 peptide binds both the HAUSP TRAF and catalytic domains, robustly suppressing its deubiquitination activity. Consequently, peptide treatments comprehensively blocked HAUSP, leading to p53-dependent cell cycle arrest and apoptosis in culture and tumor regression in xenograft mouse model. Thus, the virus has developed a unique molecular strategy to target the HAUSP-MDM2-p53 pathway, and these virus-derived short peptides represent biologically active HAUSP antagonists

    The Toxicity of a Mutant Prion Protein Is Cell-Autonomous, and Can Be Suppressed by Wild-Type Prion Protein on Adjacent Cells

    Get PDF
    Insight into the normal function of PrPC, and how it can be subverted to produce neurotoxic effects, is provided by PrP molecules carrying deletions encompassing the conserved central region. The most neurotoxic of these mutants, Δ105–125 (called ΔCR), produces a spontaneous neurodegenerative illness when expressed in transgenic mice, and this phenotype can be dose-dependently suppressed by co-expression of wild-type PrP. Whether the toxic activity of ΔCR PrP and the protective activity or wild-type PrP are cell-autonomous, or can be exerted on neighboring cells, is unknown. To investigate this question, we have utilized co-cultures of differentiated neural stem cells derived from mice expressing ΔCR or wild-type PrP. Cells from the two kinds of mice, which are marked by the presence or absence of GFP, are differentiated together to yield neurons, astrocytes, and oligodendrocytes. As a surrogate read-out of ΔCR PrP toxicity, we assayed sensitivity of the cells to the cationic antibiotic, Zeocin. In a previous study, we reported that cells expressing ΔCR PrP are hypersensitive to the toxic effects of several cationic antibiotics, an effect that is suppressed by co-expression of wild type PrP, similar to the rescue of the neurodegenerative phenotype observed in transgenic mice. Using this system, we find that while ΔCR-dependent toxicity is cell-autonomous, the rescuing activity of wild-type PrP can be exerted in trans from nearby cells. These results provide important insights into how ΔCR PrP subverts a normal physiological function of PrPC, and the cellular mechanisms underlying the rescuing process

    In Vivo Imaging of HIF-Active Tumors by an Oxygen-Dependent Degradation Protein Probe with an Interchangeable Labeling System

    Get PDF
    Hypoxia-inducible factor (HIF) functions as a master transcriptional regulator for adaptation to hypoxia by inducing adaptive changes in gene expression for regulation of proliferation, angiogenesis, apoptosis and energy metabolism. Cancers with high expression of the alpha subunit of HIF (HIFα) are often malignant and treatment-resistant. Therefore, the development of a molecular probe that can detect HIF activity has great potential value for monitoring tumor hypoxia. HIF prolyl hydroxylases (HPHDs) act as oxygen sensors that regulate the fate of HIFα protein through its oxygen-dependent degradation (ODD) domain. We constructed a recombinant protein PTD-ODD-HaloTag (POH) that is under the same ODD regulation as HIFα and contains protein transduction domain (PTD) and an interchangeable labeling system. Administration of near-infrared fluorescently labeled POH (POH-N) to mouse models of cancers allowed successful monitoring of HIF-active regions. Immunohistochemical analysis for intratumoral localization of POH probe revealed its specificity to HIF-active cells. Furthermore, lack of the PTD domain or a point mutation in the ODD domain abrogated the specificity of POH-N to HIF-active cells. Overall results indicate that POH is a practical probe specific to HIF-active cell in cancers and suggest its large potential for imaging and targeting of HIF-related diseases

    The N-Terminal, Polybasic Region Is Critical for Prion Protein Neuroprotective Activity

    Get PDF
    Several lines of evidence suggest that the normal form of the prion protein, PrPC, exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrPC to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (Δ32–134, called F35). To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (Δ23–31, Δ23–111, and Δ23–134) to rescue the phenotype of Tg(F35) mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although Δ23–31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrPC neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases

    TAT-Mediated Transduction of MafA Protein In Utero Results in Enhanced Pancreatic Insulin Expression and Changes in Islet Morphology

    Get PDF
    Alongside Pdx1 and Beta2/NeuroD, the transcription factor MafA has been shown to be instrumental in the maintenance of the beta cell phenotype. Indeed, a combination of MafA, Pdx1 and Ngn3 (an upstream regulator of Beta2/NeuroD) was recently reported to lead to the effective reprogramming of acinar cells into insulin-producing beta cells. These experiments set the stage for the development of new strategies to address the impairment of glycemic control in diabetic patients. However, the clinical applicability of reprogramming in this context is deemed to be poor due to the need to use viral vehicles for the delivery of the above factors. Here we describe a recombinant transducible version of the MafA protein (TAT-MafA) that penetrates across cell membranes with an efficiency of 100% and binds to the insulin promoter in vitro. When injected in utero into living mouse embryos, TAT-MafA significantly up-regulates target genes and induces enhanced insulin production as well as cytoarchitectural changes consistent with faster islet maturation. As the latest addition to our armamentarium of transducible proteins (which already includes Pdx1 and Ngn3), the purification and characterization of a functional TAT-MafA protein opens the door to prospective therapeutic uses that circumvent the use of viral delivery. To our knowledge, this is also the first report on the use of protein transduction in utero

    Amyloid-Like Aggregates of the Yeast Prion Protein Ure2 Enter Vertebrate Cells by Specific Endocytotic Pathways and Induce Apoptosis

    Get PDF
    BACKGROUND: A number of amyloid diseases involve deposition of extracellular protein aggregates, which are implicated in mechanisms of cell damage and death. However, the mechanisms involved remain poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we use the yeast prion protein Ure2 as a generic model to investigate how amyloid-like protein aggregates can enter mammalian cells and convey cytotoxicity. The effect of three different states of Ure2 protein (native dimer, protofibrils and mature fibrils) was tested on four mammalian cell lines (SH-SY5Y, MES23.5, HEK-293 and HeLa) when added extracellularly to the medium. Immunofluorescence using a polyclonal antibody against Ure2 showed that all three protein states could enter the four cell lines. In each case, protofibrils significantly inhibited the growth of the cells in a dose-dependent manner, fibrils showed less toxicity than protofibrils, while the native state had no effect on cell growth. This suggests that the structural differences between the three protein states lead to their different effects upon cells. Protofibrils of Ure2 increased membrane conductivity, altered calcium homeostasis, and ultimately induced apoptosis. The use of standard inhibitors suggested uptake into mammalian cells might occur via receptor-mediated endocytosis. In order to investigate this further, we used the chicken DT40 B cell line DKOR, which allows conditional expression of clathrin. Uptake into the DKOR cell-line was reduced when clathrin expression was repressed suggesting similarities between the mechanism of PrP uptake and the mechanism observed here for Ure2. CONCLUSIONS/SIGNIFICANCE: The results provide insight into the mechanisms by which amyloid aggregates may cause pathological effects in prion and amyloid diseases
    corecore