83 research outputs found
Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere
Einstein realised that the fluctuations of a Brownian particle can be used to
ascertain properties of its environment. A large number of experiments have
since exploited the Brownian motion of colloidal particles for studies of
dissipative processes, providing insight into soft matter physics, and leading
to applications from energy harvesting to medical imaging. Here we use
optically levitated nanospheres that are heated to investigate the
non-equilibrium properties of the gas surrounding them. Analysing the sphere's
Brownian motion allows us to determine the temperature of the centre-of-mass
motion of the sphere, its surface temperature and the heated gas temperature in
two spatial dimensions. We observe asymmetric heating of the sphere and gas,
with temperatures reaching the melting point of the material. This method
offers new opportunities for accurate temperature measurements with spatial
resolution on the nanoscale, and a new means for testing non-equilibrium
thermodynamicsComment: 5 pages, 4 figures, supplementary material available upon reques
An Essential Role for the Proximal but Not the Distal Cytoplasmic Tail of Glycoprotein M in Murid Herpesvirus 4 Infection
Murid herpesvirus-4 (MuHV-4) provides a tractable model with which to define common, conserved features of gamma-herpesvirus biology. The multi-membrane spanning glycoprotein M (gM) is one of only 4 glycoproteins that are essential for MuHV-4 lytic replication. gM binds to gN and is thought to function mainly secondary envelopment and virion egress, for which several predicted trafficking motifs in its C-terminal cytoplasmic tail could be important. We tested the contribution of the gM cytoplasmic tail to MuHV-4 lytic replication by making recombinant viruses with varying C-terminal deletions. Removing an acidic cluster and a distal YXXΦ motif altered the capsid distribution somewhat in infected cells but had little effect on virus replication, either in vitro or in vivo. In contrast, removing a proximal YXXΦ motif as well completely prevented productive replication. gM was still expressed, but unlike its longer forms showed only limited colocalization with co-transfected gN, and in the context of whole virus appeared to support gN expression less well. We conclude that some elements of the gM cytoplasmic tail are dispensible for MuHV-4 replication, but the tail as a whole is not
Analysis of personal action space using a model system with multiple choice structures
Action space, Latent class analysis, Nested logit model, Heterogeneity,
Construction of a Multiwell Light-Induction Platform for Traceless Control of Gene Expression in Mammalian Cells
Mammalian cells can be engineered to incorporate light-responsive elements that reliably sense stimulation by light and activate endogenous pathways, such as the cAMP or Ca2+ pathway, to control gene expression. Light-inducible gene expression systems offer high spatiotemporal resolution, and are also traceless, reversible, tunable, and inexpensive. Melanopsin, a well-known representative of the animal opsins, is a G-protein-coupled receptor that triggers a Gαq-dependent signaling cascade upon activation with blue light (≈470 nm). Here, we describe how to rewire melanopsin activation by blue light to transgene expression in mammalian cells, with detailed instructions for constructing a 96-LED array platform with multiple tunable parameters for illumination of the engineered cells in multiwell plates.ISSN:1064-3745ISSN:1940-602
- …